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Experiment No 1:  Introduction to Instrumentation Amplifier. 

Introduction 

An Instrumentation amplifier (Ins-amp) is basically a differential amplifier, but with high input 

impedance so that it can faithfully reproduce voltage signals from any source. The idea is that the voltage 

should be dropped across the input impedance of the amplifier. A differential amplifier is a basic circuit to 

pick up and amplify a small signal in presence of a relatively large background noise. However, it is only 

possible if the noise is the same at two electrical points, which carry the signal, with respect to a third 

point. That is the noise should be common to both the input terminals. To clarify, suppose a small signal, 

of the order of a few mV, appears between two electrical terminals. Now if an external noise with respect 

to a third terminal appears on both the above two terminals with equal magnitude and phase then it is 

possible to eliminate the noise. Instrumentation amplifiers are used in industry as well as in bioelectrical 

measurements.  

Equipment List: 

1. IC: LM324  

2. Resistors: 1kΩ, 2.2kΩ, 10kΩ 

3. A preset resistor, about 10kΩ to 20kΩ, preferably multi-turn type. 

 

Theory of Instrumentation Amplifier 

 

 

For a non-ideal instrumentation amplifier 

 

Vout= Ad (V2 - V1)+ ½ Acm(V2 + V1) … … (1) 

Fig 1: Basic Bioelectric Amplifier 
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Fig.1 shows the basic circuitry of an instrumentation amplifier consisting of 3 operational amplifiers 

(opamps). This is the most popular form of an instrumentation amplifier which has two inputs V1 and V2, 

and one output Vout, all referenced to ground or common (0V). Here we will perform the analyses based 

on ideal assumptions for the op-amps, and will also assume that Acm is zero, initially. Here Vout ∞ (V2 – 

V1), i.e., it is a differential amplifier where the output is proportional to the difference of two inputs. It has 

two stages as indicated in Fig.3. The first stage has a differential input and also has a differential output 

(double ended input, V1 and V2 and double ended output, V1’ and V2’), while the 2nd stage has a 

differential input (double ended input, V1’ and V2’) and a single ended output Vout. In the circuit shown, 

Resistor R4’ has been shown to consist of a fixed resistor in series with a variable resistor. This is required 

to adjust the CMRR. 

CMRR=  … … (2) 

CMRR in dB = 20 log  … … (3) 

Where Ad is the differential gain, Acm is the common-mode gain. 

Analysis  

In Fig.1, The first stage has both differential input and differential output given by,  

V2’ – V1’= A1(V2 – V1), … … (4) 

 

Where the Gain    A1 = 1+ 2R2/R1 … … (5)  

 

The second stage has a differential input and a single ended output given by,  

Vout = A2( V2 ’ – V1 ’ ) … … (6) 

where  A2 = R4 / R3 and it is assumed that  

R4 / R3 = R4' / R3' … … (7) 

 The overall differential gain Ad is the product  

Ad = A1 A2 = (1+ 2R2/R1) ( R4 / R3) … … (8) 

Introducing non-zero common mode gain  

The common mode input voltage Vcm is given by the average of the two input voltages V1 and V2, i.e.,  

Vcm = (V1 + V2)/2 … … (9) 

If the common mode voltage gain Acm is not zero then we will have a contribution from Vcm as well, as 

given in Eq.1. In Eq.1, if the differential input voltage is zero, i.e.,  

if V2 – V1 = 0, then Vout = AcmVcm … … (10) 

This gives a way of measuring Acm. 

Design considerations for CMRR  

CMRR should be as large as possible, and for an ECG amplifier, it should be > 60 dB, and for EEG it 

should be >100dB. In the 2nd stage of the amplifier two ratios, R4 / R3 and R4' / R3' , associated with the 
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two inputs of the differential amplifier are assumed to be equal. This is essential to get a high value of 

CMRR. However, in practice it is almost impossible to have two exactly equal fixed resistors, so this 

condition is achieved manually, through experiment. Therefore, R4 ’ is configured as a variable resistor in 

series with a fixed resistor, and a maximum CMRR is achieved through experimental adjustment of the 

variable resistor, described later. 

 

Adjustment for maximum CMRR and measurement of Acm  

 

 

 

The common mode rejection ratio has to be maximized by varying the preset resistor in R4' so that Eq.7 is 

satisfied. For this adjustment we need a common mode input, i.e., the same signal applied to both the 

inputs. The necessary arrangement is shown in Fig.2, with both inputs connected to the signal generator 

while the other end of the signal generator is connected to ground. Apply a few volts amplitude at 1 kHz 

and observe the output on an oscilloscope. Adjusting R4', minimize the output as far as possible. You 

may have to increase the signal input (but should not be more than power supply voltage to the circuit) 

and increase the input sensitivity of the oscilloscope to get a good adjustment since the output will be 

very small. Keeping this set-up, measure the output and the input voltage amplitudes (or peak to peak 

voltages) to obtain the common mode gain as  

 

Acm = Vout / Vcm  

 

Measure Acm at different frequencies, starting from the minimum that you have on the signal generator to 

the maximum. In this measurement check the input signal amplitude at each measurement frequency. 

Keeping this amplitude constant will make Vout proportional to the gain, and simplify calculations.  

Measurement of differential gain with frequency  

 

 
 

Fig 2: Connection for adjusting and measuring CMRR 

Fig 3: Connection for measuring differential gain 
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To measure the differential gain, Ad, connect one of the differential input terminals (any one) to ground 

as shown in Fig.3 and apply about 10 mV (amplitude) signal to the other input terminal. If the signal 

generator cannot go down to 10 mV, make an attenuator yourself as indicated in Fig.4. In Fig.3 the 

instrumentation amplifier has been set up essentially as a single ended amplifier, and it gives the 

differential gain. Measure this differential gain over a range of frequencies as before (take the same 

frequency values as you had used for Acm above, this will make the CMRR plot in the next section 

easier). As above check the input signal amplitude at each measurement frequency.  

Keeping this amplitude constant will make Vout proportional to the gain, and simplify calculations. Plot 

Ad as a function of frequency to see the frequency response of the amplifier. 

 

Determination of CMRR with frequency  

 

From the above measurements obtain the CMRR in linear and dB scales at each measured frequency 

using Eq.2 and Eq.3. Plot both to see the frequency response of CMRR.  

 

 

Report 

 

The results of this experiment are the values of differential and common mode gains and the CMRR that 

you obtained at different frequencies. Present the results in graphical form in the main text and place the 

raw tables in an Appendix at the end. Although indicated above, to summarize, you need the following 

plots from your measured data.  

1. Ad (linear scale) against frequency (log scale)  

2. The above with gain in dB.  

3. CMRR (in linear scale) with frequency (log scale)  

4. The above with CMRR in dB.  

 

Fig 4: Voltage divider for attenuating signal.  

R2 should be less than R1. 
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Experiment No 2: Circuit design and breadboard implementation of an optical isolator. 

Objective 

Isolation amplifiers can be used to break ground loops, eliminate source ground connections, and provide 

isolation protection to patient and electronic equipment. In a biopotential amplifier, the main purpose of 

the isolation amplifier is the protection of the patient by eliminating the hazard of electric shock resulting 

from the interaction among patient, amplifier, and other electric devices in the patient’s environment, 

specifically defibrillators and electrosurgical equipment. It also adds to the prevention of line frequency 

interferences. 

 

Theory 

An Optocoupler, also known as an Opto-isolator or Photo-coupler, are electronic components that 

interconnect two electrical circuits by means of an optical interface. The basic design of an optocoupler 

consists of an LED that produces infra-red light and a semiconductor photo-sensitive device that is used 

to detect this emitted infra-red light. Both the LED and photo-sensitive device are enclosed in a light-tight 

body or package with metal legs for the electrical connections as shown. 

An optocoupler or opto-isolator consists of a light emitter, the LED and a light sensitive receiver which 

can be a single photo-diode, photo-transistor, photo-resistor, photo-SCR, or a photo-TRIAC and the basic 

operation of an optocoupler is very simple to understand. 

Equipment List: 

1. LM324 : 1 pc 

2. PC817 : 1 pc 

3. 500Ω resistance : 2 pcs 

4. 1kΩ resistance :4 pcs 

5. 2.2 kΩ resistance : 1pc 

Photo-transistor Optocoupler 

 

 

 

 

 

 

 

Assume a photo-transistor device as shown. Current from the source signal passes through the input LED 

which emits an infra-red light whose intensity is proportional to the electrical signal. This emitted light 

falls upon the base of the photo-transistor, causing it to switch-ON and conduct in a similar way to a 

normal bipolar transistor. The base connection of the photo-transistor can be left open for maximum 

sensitivity or connected to ground via a suitable external resistor to control the switching sensitivity 

making it more stable. 

When the current flowing through the LED is interrupted, the infra-red emitted light is cut-off, causing 

the photo-transistor to cease conducting. The photo-transistor can be used to switch current in the output 

circuit. The spectral response of the LED and the photo-sensitive device are closely matched being 

separated by a transparent medium such as glass, plastic or air. Since there is no direct electrical 

connection between the input and output of an optocoupler, electrical isolation up to 10kV is achieved. 
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Operating the isolator in its Q point:  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure: Ic vs Vce curve for transistor 

Experimental Setup 
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Data table 

Collector 

Resistance Value 

Vin(Vdc) 

Volt 

V0 (Vce) 

Volt 

Id 

mA 

Ic 

[ Ic=(Vcc-Vce)/Rc ]  
mA 

 

 

 

 

 

 

 

 

Rc= 500Ω 

0    

0.5    

1    

1.5    

2    

2.5    

3    

3.5    

4    

4.5    

5    

 

 

 

 

 

 

       

Rc= 1kΩ 

0    

0.5    

1    

1.5    

2    

2.5    

3    

3.5    

4    

4.5    

5    

 

 

 

 

 

 

 

Rc= 2.2kΩ 

0    

0.5    

1    

1.5    

2    

2.5    

3    

3.5    

4    

4.5    

5    

 

 

 
Group No:  

Signature of the Teacher 
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Report 

1. Draw the Ic vs Vce curve in a graph for different values of Collector resistance. 

2. Draw the load line and find the Q point. 

3. Discuss other methods of Isolation. 

4. Mention some important reasons for Isolation. 
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Experiment 3: Introduction to Electrocardiograph (ECG).   

 
Objective:  

1. Design an amplifier for ECG analysis  

2. Analyze the frequency response of the amplifier  

3. Implement the amplifier and monitor ECG  

 
Theory:  

The Electrocardiography (ECG) is the process of visualizing the electrical activity of the heart over a 

period of time. These electrical activities result from the depolarization of the myocardium in a certain 

pattern. The electrical activities are monitored using surface electrodes over the body.  

As we know, the heart has a certain rhythm over a course of time in which it contracts and expands, 

pumping blood out to the body. This periodic rhythm is caused by depolarization of some specific points 

on the myocardium, namely the Sino-Atrial Node (SA node), the Atrio-Ventricular Node (AV node) and 

the His-Purkunje Fibers. These depolarizations create electrical impulses. As the human body is a volume 

conductor, the effect of any electrical impulse inside the body can be detected from the surface. 

 

The electrical activity of the heart can be modelled as the movement of an electrical dipole. A dipole 

consists of two opposite charges. A cardiac vector is the line joining the two charges. Although the heart 

does not consist of two opposite charges, the electric field created due to the depolarization of the heart 

resembles that of an electric dipole. To describe a vector by its length in three dimensions, three 

directions are considered which are 60° apart. These directions form a triangle known as Einthoven’s 

triangle. The direction from one point to another is known as a Lead, hence having three leads. 
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Figure 02: Einthoven’s triangle and different Leads. 

The body and the heart are three dimensional, so the electrical signals recorded from the skin will vary 

depending upon the position of the electrodes. For diagnostic purpose, some standardization of electrode 

positioning is needed. This is done by placing the electrodes on the limbs. The three points of the 

Einthoven’s triangle are the three limbs where we put the electrodes. The three leads are thus considered 

as  

Lead I : from Right Arm (-ve) to Left Arm (+ve)  

Lead II : from Right Arm (-ve) to Left Leg (+ve)  

Lead III : from Left Arm (-ve) to Left Leg (+ve)  

As the lower half of the body can be considered equipotential, the bottom point in the Einthoven’s 

triangle can be considered as any point in the lower thorax. For simplicity, we use the left leg for this 

point. 

The ECG has an amplitude range of 0.5 mV – 3.0 mV and a frequency range of 1Hz to 50Hz. To 

effectively monitor the ECG, an amplifier is required with a gain of approximately 1000. For this, an 

Instrumentation amplifier with a high common mode rejection ratio is used. For patient safety, optical 

isolation is needed. In addition, a bandpass filter is also needed to suppress the contribution of the DC 

biasing and the 50Hz default supply line frequency. For proper filtering, the bandpass filter should have a 

lower cutoff of 0.1Hz and a higher cutoff of 500Hz (one decade more than the desirable frequency range 

on both sides). The cutoff frequency of the filter can be calculated using  

RC
fc

2

1
  

Equipment: (Specify the model and quantities)  
1. Op-Amps  

2. Resistors  

3. Variable resistors  

4. DC power source  

5. Signal Generator  

6. Oscilloscope  

7. Opto-isolator  

 

Circuit Setup:  

Set up the circuit given in Figure 03 and take inputs from body. For simplicity we will only observe Lead 

I, for which set the –ve input of the Instrumentation amplifier in the Right arm, the +ve input of the 

amplifier in the Left arm and connect the electrode to the Left leg to the ground. Before connecting the 
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electrodes to the specimen body, make sure that your circuit is properly isolated to provide faulty current 

flow from the monitoring end.  

 

Data Table:  

Analyze the frequency response of the bandpass filter.  

Frequency (Hz)  
 

VIN (mV)  
 

VOUT (V)   
 

Gain 

    

    

    

    

    

 

Results:  

 Include the graphs for the frequency response of the filter.  

 Include graphs for Lead I (take a snapshot of the oscilloscope with proper magnitude)  

 
Discussion:  

Discuss the problems, findings, shortcomings, outcome discrepancies of the experiment with theoretical 

explanation. 
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Experiment 4:  Introduction to Electromyogram (EMG) 

 

Introduction: 

EMG stands for Electro Myo Graphy – meaning visualisation of the electrical signals of muscles (Greek- 

Myos muscle). A mass of muscle that we feel at different places in our body consists of many muscle 

fibres. At rest each muscle fibre has a charge separation across its covering membrane (outer surface 

positive with respect to the inside of the fibre) giving rise to a polarised state. This is reversed or 

depolarised in segments of the fibre when an action is initiated, which after a relaxation period 

automatically reverts back to the resting polarised state. This contributes to an action potential which 

travels along the fibre. At any instant of time this charge separation contributes to an electric dipole 

vector. Similar dipole vectors are produced in all other muscle fibres in the group. A muscle is usually 

controlled by nerve signals (nerve action potentials) sent from the brain. When nerve action potentials 

reach the muscle, muscle action potentials are initiated through the neuro-muscular junctions which gives 

rise to EMG. Such an EMG is also called voluntary EMG since it is the result of a voluntary action of the 

person.  

 

 
Fig.1: Typical EMG waveform on voluntary contraction 

The body is a volume conductor, consisting of electrolytes, having both positive and negative free ions. 

Therefore, within the body the dipole vectors give rise to an external current which change with time. 

When a current flows through a resistor, a potential drop occurs across it. Similarly due to the external 

current distribution in the volume conductor, potential differences are produced between any two points. 

This potential difference can be picked up using two electrodes placed at two suitable points outside, 

which when plotted against time gives the well-known EMG as shown in Fig.1.  

A metallic electrode connected to a mass of electrolyte such as the human body contributes to a dc contact 

potential of the order of a volt. Since both electrodes are usually of the same metal, the dc contact 

potentials have opposite directions in the circuit loop which should cancel out ideally. This cancellation is 

not total and some low frequency ac potential may be present due to differences in slow acting chemical 

reactions under the two electrodes. However, since EMG is an ac greater than 10Hz, the dc or the low 

frequency potentials may be eliminated using an appropriate high pass filter, which has indeed been done 

inside the EMG amplifier.  
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Fig.2: Voltage division between contact impedance and input impedance of the EMG amplifier  

 

The contact impedance for skin surface electrodes is also important as discussed with the help of Fig.2. 

When connected to the input of an amplifier, the source voltage vs (EMG here) is dropped across both the 

contact impedance Rc and the input impedance Rin of the amplifier. We want Rc << Rin such that almost 

the whole of the source voltage is dropped across Rin. Besides, due to ground loop currents, some mains 

ac may be dropped across these contact impedances increasing the 50Hz noise as explained in the next 

section. Therefore, we have to take care that the contact impedances are minimum. This is very important 

for the ‘Common’ electrode which has a greater contribution to common mode 50Hz noise. Therefore, the 

common electrode is usually made of larger contact area compared to the active potential pick-up 

electrodes. Typically the contact impedances vary from about 5kΩ to about 50 kΩ at low frequencies 

depending on the metal type and the skin preparation. Human skin surface is composed of dead horny 

cells contributing to large impedance. Besides, there may be oil or grease increasing the impedance 

further. Therefore, before electrodes are applied, the skin should be rubbed well using alcohol, preferably 

with some fine abrasive to remove the dead cells, and conduction electrode gel should be applied to the 

electrodes before attaching to the skin.  

 

Interference and noise, necessity of differential amplifier & filters  

 

EMG is usually associated with a large noise voltage, mostly from the mains electrical lines at 50Hz (60 

Hz in some countries). How this noise gets through is explained below.  

The main source of noise in an EMG equipment is the 50Hz mains. Fig.3 shows how it gets into an 

amplifier. At the street poles, the transformer that supplies 220V to our premises, one of the secondary 

terminals is connected to the underground water layer, the Ground of our electrical system. The 

underground water layer can be considered to be a good conductor of electricity and is the common 

Ground for all appliances and circuit connections. This ground connected secondary terminal is called the 

Neutral indicating that if we touch it while standing on the ground we would not get a shock since there 

is no electrical potential difference between the two points of touch. On the other hand if we touch the 

other secondary terminal, called the Live, while standing on the ground, we will get a shock since we will 

be in between a 220V ac potential.  



AUST/EEE

Page 16 of 30 
 

 
Our body has two electrical connections to the Ground, a very high resistance RG, which is the leakage 

path from our body to the Ground, and a capacitance CG in parallel. There is also a capacitance CL 

between our body and the Live terminal. In this electrical system, our body, full of electrolytes, acts as a 

conductor with low impedance. Now CL and CG (with RG in parallel to the latter) form a voltage divider 

and therefore without any other electrical connections, our body is at a substantial 50Hz potential 

(typically 20V) with respect to the Ground. The live wire is not only in the house wiring, it comes to 

equipment that we are handling, and therefore is quite close to us. Depending on the proximity of the live 

wire, we can have tens of volts of 50Hz ac on our body, which can be perceived when we touch the tip of 

an oscilloscope probe without touching the ground.  

At our premises a third connection is brought out, side by side to the two mains ac lines, by placing a 

metallic plate or rod deep into the ground. The idea is that it will connect to the underground water layer 

(which is actually done so in large buildings through ground boring, but not so in smaller constructions), 

and this is the third connection in a 3-pin mains socket, called the Earth or Ground connection. If an 

electrode is attached to our body which is directly connected to the ground point, a contact resistance 

RCG at the electrode skin interface comes into play which is relatively small, and the 50Hz ac potential 

on our body drops to a low value (voltage dropped across RCG). If an EMG electrode is connected with a 

good skin preparation, RCG can be of the order of 10kΩ and the 50Hz potential on the body, with respect 

to the ground, comes down to about 10 or 20 millivolts. This is low, but not so when we compare with the 

EMG signal which is only about 0.5mV in amplitude. So if we want to detect EMG signal using an 

electrode at any point on our body (where the contact resistance has been shown to be RC) and connect it 

to the input of a normal single ended amplifier (having one input), the net input signal vin will consist of 

both the EMG signal (~0.5mV) and the 50Hz noise (~10mV) dropped across RCG. It is easy to see that 

the noise is about 20 times larger and it will be impossible to discern the EMG signal under such a 

situation. Besides, the frequency content of EMG picked up using skin surface electrodes is 

approximately between 10Hz and 3000 Hz, so filtering out such a large 50Hz signal will distort the EMG 

signal itself. Therefore normal amplifiers with one input port that are used in most normal applications, 

such as in radio and audio applications, cannot be used to amplify bioelectrical signals like EMG.  

Fortunately, this noise voltage is almost the same all over the body since the body resistance is very small 

compared to series reactances and resistances in the 50Hz current loop. Therefore a differential amplifier 

may be used to eliminate this noise. This amplifier has two inputs with respect to a common terminal (0V 

reference), and the output is proportional to the difference of the two inputs, as shown in Fig.4. The two 

input terminals are connected to electrodes placed at two points on the muscle mass while a third 

electrode, placed at any other point on the body, is taken as the common terminal. Since the 50Hz noise 

has the same amplitude at both the input electrodes with respect to the common terminal as mentioned 

above, on subtraction this noise is eliminated while the difference signal, which is the EMG in this case, 
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appears at the output, amplified through a differential voltage gain of Ad. The same 50Hz noise appearing 

at both the inputs is known as the Common Mode signal (vcm). Ideally the common mode signal should 

get totally eliminated in a differential amplifier, and the relationship is expected to be,  

RCG  

 

 

 
Vout = Ad (V2 – V1). … … (1) 

Practically the common mode signal cannot be totally eliminated, a small non-zero common mode 

voltage gain Acm is present and the equation is modified as,  

Vout = Ad (V2 – V1) + Acm Vcm … … (2) 

We would want Acm to be as small as possible with respect to Ad. The ratio of Ad to Acm is defined as the 

Common Mode Rejection Ratio (CMRR), i.e.,  

CMRR = Ad/Acm … … (3) 

Obviously we would want CMRR to be as large as possible. Usually it is expressed in dB units given by,  

CMRR = 20 log Ad/Acm … … (4) 

The 50Hz common mode noise needs to be reduced to about one hundredth of the maximum size of the 

signal, i.e., about 0.005mV for EMG. That is, a 10mV 50Hz noise has to be effectively reduced by 2000 

times (or by 63dB). This you may achieve through better skin preparation, keeping a distance from mains 

connected equipment, keeping the lead wires as close as possible to minimise the area of the loop formed 

by these wires (to minimise emf generated due to magnetic fields created bu transformers, motors, etc.).  

There is a safety aspect necessary with all hospital based electrical equipment. In hospitals there may be 

situations where catheters are connected directly to heart muscles. If a small current, of the order of 50μA 

at 50Hz passes through such a directly connected electrode, the heart may go into a state called 

defibrillation in which the rhythmic contraction is lost, resulting in loss of blood being pumped, causing 

eventual death. This is called ‘microshock’ in contrast to normal shock that we receive by touching a 

mains live cable by hand, where the dry skin provides a large resistance (about 30kΩ) limiting the current. 

Besides, the current distributes throughout the body having only a minute fraction passing through the 

heart itself. Thus in such a situation about 75mA (more than 1000 times the microshock value) is needed 

to cause defibrillation and death. Although most patients in hospitals do not have a catheter connected to 

their heart, we cannot take risk even if one patient out of a thousand have this dangerous situation. 

Therefore, all circuitry connected to the patient should be electrically isolated from the mains connected 

equipment such that not more than 10μA passes through the patient even in case the live 220V wire gets 

shorted to the body (ground) or to any other circuit part of the mains connected equipment.  

There is another source of noise voltage. Since the EMG amplifier has to be connected to an oscilloscope 

or a computer which is driven by mains 50Hz, through capacitive coupling this 50Hz noise gets into the 

input of the amplifier.  

The EMG amplifier supplied has been designed to tackle the above problems.  
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The Experiment, Methods and Measurements  

Fig.5 shows the way to connect the EMG amplifier to a human subject on one side, and to a computer on 

the other through its USB port. The pad with two active electrodes is to be placed on the belly of a 

muscle, along its length, while the larger common electrode should be connected nearby at any point, 

preferably at a point at almost equal distances from the two active electrodes. It is better to keep the 

common electrode away from places with fatty layers underneath, because fat layers will increase the 

electrode impedance.  

Prepare the skin well by rubbing with an anti-greasing agent like alcohol (liquid Savlon may do) with a 

mild abrasive pad, like a strong tissue paper. Let it dry. Now put a drop of electrode jel onto the 

electrodes each and attach them to the hand muscle as shown using a Velcro strap supplied.  

 

 

 
Fig.5: Connections for measuring EMG 

 

Run the EMG programme on the computer and click on to the ‘EMG’ tab. Most instructions will be 

available on-screen as you go through the steps. You will see a display of several seconds duration in the 

graphical window.  

With the hand muscles relaxed try to see that you get an almost flat response. You may get a periodical 

50Hz noise. Try to move yourself away from the table or other equipment as much as possible, you will 

find a minimum of this noise at a certain arrangement.  

Now grip your fingers into a strong fist. You may try holding a cylindrical object of about 3cm diameter. 

You will see the EMG signal on the screen. Get an estimate of the average maximum amplitude using a 

plastic scale placed on the screen. You do not need to be very accurate, an eye estimation will do for this 

laboratory experiment (you may do it accurately through software analysis of acquired data). Now reduce 

the strength of the grip and again measure the average maximum amplitude. Note the values. You may fix 

the electrodes on other muscles (getting information from an anatomy book) and see differences, if any. 

Now do the same with another subject, note the values and see the difference with yours. Of course here 

you do not have a measure of the gripping force, but instruments are available that can measure such 

forces.  
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Results and Presentations  

Make a table with one column showing average maximum amplitude on light muscle contraction and 

another column showing that for strong contraction. Do this for several subjects and enter these in 

different rows.  

You may similarly make another table for EMG from different muscles from the same subject.  

 

Discussions  

The discussion should be separated into three sections, on theory and assumptions, on methods and 

experiments, and on the results, but without any headings.  

Under the first section you may include the following:  

1. EMG obtained using surface electrodes gives a gross evaluation of a whole muscle mass. The signal 

picked up is a combination of action potentials of all the fibres in the contracted muscle, however, the 

ones nearer to the electrodes contribute more.  

2. The signal may be analysed in different ways, such as cumulative integration of amplitude, FFT, etc., 

to get more information.  

3. Since a large part of the EMG signal falls in the audio frequency range, the signal can be fed directly 

into an audio amplifier to hear the sound pattern.  

 

Under the second section you may include the following:  

1. Skin should be adequately prepared to get low values of contact impedances under the electrodes, 

otherwise 50Hz noise will increase.  

2. Only a little amount of conducting gel should be used on the electrodes. If the gel spreads there is a 

chance that it will create a shorting path on the skin, thus reducing the EMG significantly. If the electrode 

is repositioned, the gel on the skin due to the previous placement should be wiped off with alcohol or 

savlon and dried.  

3. If you get large 50Hz noise check the electrode contacts, mention which maneuvers helped reduce the 

noise – whether it was sitting away from a table on which other electrical equipment are placed, or 

whether it was due to moving yourself away from mains cable or wires that are from the mains connected 

‘non-isolated’ side, or whether it was due to sitting on a wooden chair instead of a chair with a metallic 

frame, etc.  

4. Try to create an electrical circuit model of the situation that contributed to increasing or decreasing 

noise.  

 

Under the third section you may include the following:  

 

1. How much the average amplitude varied with variation in contraction.  

2. How much it varied for different persons.  

3. How much it varied for different muscles.  

 

You may further discuss:  

1. EMG gives an insight to our body electricity.  

2. Amplitude of EMG increases with increased contraction of muscle.  

 



AUST/EEE

Page 20 of 30 
 

 

3. Amplitude of EMG will depend on muscle mass, a muscle with more mass may give larger EMG 

signals. A person with more muscle mass may give a higher EMG as well.  

4. EMG signals can further be analysed to show average, cumulative integration, frequency spectrum, etc. 

to compare healthy muscles from ones with disorders.  

5. Surface EMG may also be used to assess the strength of contraction. This may be useful to assess the 

recovery of stroke patients.  

6. Surface EMG may also be used to control artificial prosthesis or robotic arms.  

7. Surface EMG from muscles on the face may be used to control equipment, wheel chair, etc. by 

paralysed patients.  

 

Why not try the following?  

You may try doing some of the analyses mentioned above by developing appropriate software. You may 

make a gripping force measuring device using a spring and a way to measure the deformation of the 

spring
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Experiment 5: Introduction to Nerve Stimulator circuit 

Objective:  

Overall objective is to design a nerve stimulator and implement the circuit on breadboard. In the process 

the following circuits will be implemented 1. An astable multivibrator using 555 timer IC 2. A 

complimentary Darlington pair (Sziklai Pair) to amplify current from the astable multivibrator. 3. A step 

up transformer to get desired pulse voltage to stimulate nerve Theory: If a current of sufficient amplitude 

is passed between a pair of surface electrodes then muscles will contract. They contract because a 

stimulus is being introduced to the nerve fibers, which supply the muscles. If we use a short pulse of 

current, a graph can be drawn in which the current needed to cause stimulation is plotted against the 

duration of the current pulse. This graph (fig. 1(a)) shows that, unless an excessively high current is to be 

applied, a pulse lasting at least 50µs, and preferably as long as 2ms, is needed to stimulate the nerve 

fibers. The stimulation only occurs underneath one of the surface electrodes. The stimulation occurs 

underneath the electrode at which the pulse is seen as a negative pulse. We can explain this by 

considering what is actually happening to a nerve fiber when a current is applied. A nerve will be 

stimulated when the transmembrane potential is reversed by an externally applied current. If, where the 

current enters the nerve, the externally applied current flows from positive to negative, then the 

transmembrane potential will be increased, and where the current leaves the nerve, the transmembrane 

potential will be reduced. Stimulation will occur where the current leaves the nerve. If the positive 

electrode is called the anode and the negative the cathode, then stimulation starts underneath the cathode 

(fig. 1(b)). 

 

Fig. 1: (a) The current needed to cause muscle stimulation beneath a pair of surface electrodes on the arm 

is shown as a function of pulse width. (b) Stimulation occurs underneath the cathode, where the 

transmembrane potential is reduced. 

An astable multivibrator is needed to produce such a pulse but will have very low current at output. Thus 

a complimentary Darlington pair is used in second stage to achieve high current gain. Then the output is 

passed through a step up transformer to step up the pulse to desired voltage.  
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Equipment:  

1. 555 timer IC  

2. PNP and NPN transistor  

3. Resistors  

4. Capacitors  

5. Diode  

6. Step up transformer  

 

Design & Assembly:  

Assemble the circuit as shown in fig. 2. In the 555 timer IC, 8th pin and 1st pin of the IC are used to give 

power, Vcc and GND respectively. The 4th pin is RESET pin which is active low and is connected to Vcc 

to avoid accidental resets. 5th pin is the Control Voltage pin which is not used. So to avoid high 

frequency noises it is connected to a capacitor C’ which has its other end connected to ground. Usually C’ 

= 10nF. The Trigger (pin 2) and Threshold (pin 6) inputs are connected to the capacitor which determines 

the output of the timer. Discharge pin (pin 7) is connected to the resistor Rb such that the capacitor can 

discharge through Rb. 

 

Fig.2: Circuit design of a nerve stimulator 

Capacitor charges through Ra and Rb.  

 Thigh = 0.693(Ra + Rb)C  

Capacitor Discharges through Rb  

 Tlow = 0.693RbC  

 Output Frequency = 1/(Tlow + Thigh) = 1.44/((Ra + 2Rb) * C) 

  Duty Cycle = Thigh/(Thigh + Tlow)  
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Calculate the values of Ra and Rb, according to your output waveform. 

The output of this circuit is feed into the next section where complimentary Darlington pair provides high 

current gain. The step-up transformer then provides desired pulse voltage.  

Results:  

1. Calculate the Tlow and Thigh value according to practical values of Ra and Rb.  

2. Find percentage of error for practical values of Tlow or Thigh with previous calculation.  

3. Observe how much current gain is achieved after complimentary Darlington section.  

4. Observe the pulse voltage after step up transformer section.  

Discussion:  

Discuss the problems, findings, shortcomings, outcome discrepancies of the experiment with theoretical 

explanation. 



AUST/EEE

Page 24 of 30 
 

 

Experiment 6: Heart rate measurement using Light Plethysmograph  

 

Introduction 

The Greek word Plethysmo relates to increase in something. Plethysmography in medical science is 

commonly used to measure the increases in volumes of the whole body or a part of the body typically due 

to pumping of blood during systole (higher blood pressure regime within the heart cycle). Due to 

pulsating movement of blood the volume of limbs vary a little with heart cycle. Plethysmography is used 

to measure this change. Of course with light plethysmography the volume may not be measured 

accurately, but the pulsating behaviour can be readily indicated. Red light is scattered by blood therefore 

if we look at a finger with a bright light placed at the opposite side the whole finger appears red. 

However, due to the pulsating blood this scattering intensity varies a little, which cannot be appreciated 

by looking at it, but if we use a light detector, we can see the change. The present experiment will allow 

us to measure these changes on an oscilloscope screen (or on a computer monitor if a computerised data 

acquisition system is used). 

 

Methods and Measurements  

This will require a light source and a detector with necessary electronics, and a storage oscilloscope to 

display the pulsating waveforms as shown in Fig.3. Alternatively, a PC based data acquisition system 

may be used to display the waveforms by writing the necessary software. 
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The LED needs a constant current supply in order to keep the light output constant. This can be done 

using a constant voltage power source driving the LED in series with a fixed resistor. However, with 

changes in temperature the forward voltage drop of the LED will change slightly resulting in a small 

change in the current as well. Therefore, a constant current source is preferred as shown in Fig.4. This 

uses a variable voltage regulator LM317 in a configuration that gives a constant current through the load 

(here the LED). The IC LM317 maintains a fixed voltage of about 1.2V between its output (OUT) and 

adjust (ADJ) terminals, which is almost independent of temperature. Therefore, the current I through R 

will be given 

by,  

I = (VOUT – VADJ) / R  

Taking 1.2V for the voltage difference and R = 50 Ω,  

I = 24 mA  

This current remains constant and flows through the LED. Current from the ADJ terminal is very small 

and negligible. Therefore, the total current through the LED is constant. The forward current through the 

LED should be kept at less than 30 mA to get a long working life, therefore this design of 24 mA is 

acceptable. However, 50 Ω is not a preferred value, the nearest is 47 Ω which would give about 6% 

higher current which is still acceptable. 

 

The current to voltage converter and signal conditioner circuits are shown in Fig.5. A photodiode has 

been used as a detector here. With negative feedback the voltage at the inverting input equals that 

at  

the non-inverting input, which is 0V in this current to voltage converter circuit. Therefore, the photodiode 

has zero bias. The reverse photocurrent IP has to be supplied by the output terminal through feedback 

resistor RFB since no current can come from the input terminal of the op-amp. Therefore,  

IP = IFB  

And the output voltage VOP of the op-amp is given by,  

VOP = IFB RFB = IP RFB  

i.e., VOP ∞ IP  
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Depending on the magnitude of the photocurrent we have to choose RFB to get a reasonable output 

voltage. We may start with a value of about 1MΩ and then change it according to output obtained on 

actual measurement on a human finger.  

The output is expected to have a large dc component and a small pulsating component. Since we are 

interested in this pulsating part of the signal we need to filter the dc out. This is the signal conditioner part 

of the circuit which is essentially a high pass filter. However, we need to take care that we do not cut out 

the frequency components that we are interested in. The pulsating blood has a period of about 1 sec, 

corresponding to a heart beat rate of 60 per minute. Therefore, the cut-off frequency of the high pass filter 

should be less than 1Hz, typically less than 0.5Hz. This is related to circuit parameters by,  

0.5Hz = 1 / (2π RC)  

or, RC = 0.32 sec, which is a time constant for the RC circuit. Here we have two unknowns but only one 

equation, which cannot be solved mathematically. From a design approach we use our experience to 

choose one of the unknowns and determine the other. If it turns out to be an impractical value then we 

adjust these to get an optimised combination.  

For RC time constant, 0.32 sec is a large value. Therefore let us start with a large value of R, say 100kΩ. 

This gives C = 3.2 μF. This value of C is too large if we want to use non-polar capacitors. On the other 

hand if we use electrolytic capacitors, this is a practical value, but such capacitors have leakage problems, 

a large tolerance (±20%), and one needs to take care of the polarity in the circuit, which side will have a 

higher dc potential during operation. If we decide to go for non-polar capacitors then we may choose R = 

2.2 MΩ and C = 0.15 μF (nearest preferred value). However, since the resistance has a high value, the 

output voltage will be reduced due to voltage divider action when we connect a load, which is going to be 

less than 2.2MΩ in most probability. Therefore, we need an impedance buffer. This is usually achieved 

using an op-amp circuit with 100% negative feedback giving unity gain. However, an op-amp gives an 

opportunity to have some voltage gain with reduced feedback but still maintaining the necessary 

impedance buffer action. This we have done here through negative feedback using R1 and R2, the gain 

being (1 + R2/R1). The values of these resistors may be chosen during the experiment depending on the 

input requirements of the storage oscilloscope or of the PC based data acquisition system. We may choose 

10 kΩ for both R1 and R2 giving a gain of 2, or choose R1 = 10 kΩ and R2 = 100kΩ for a gain of 11. If 

there is high frequency noise we may make a low pass filter by placing a suitable capacitor CP (not 

shown in figure) in parallel to R2. A cut-off frequency of between 10Hz and 20Hz should be good enough 

for this application (as it will also reduce 50Hz noise from the mains) and CP should be chosen 

accordingly.  

To view the pulsating output, we have to set the horizontal time scale such that 3 or 4 heart cycles can be 

observed. This will need a total sweep of about 3 to 4 sec, i.e., 0.3sec to 0.4 sec per division (if there are 

10 major divisions along the horizontal). 

Results  

We expect a pulsating waveform on the storage oscilloscope as shown in Fig.6.  
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Fig. 6: Pulsatile waveform of Light Plethysmograph output  
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Experiment 7 : To study the frequency response of electrode contact impedance. 

  

 

Introduction 

When applying electrical stimulation/current using surface electrodes, the body becomes part of an 

electric circuit as the current travels from one electrode to the other. The electrode-body surface interface 

offers a frequency dependent resistance, called contact impedance, which can be represented by an 

electrical equivalent circuit. Electrodes Electrodes Figure 2: A simple equivalent circuit for a pair of 

electrodes applied to the skin Figure 3: Circuit connection for electrode contact potential measurement.  

In the equivalent circuit shown right (figure 1):  

 
 Vh is the half-cell potential  

 Rd and Cd makes up the impedance associated with the electrode-electrolyte interface.  

 Rs series reisistance associated with resistance of electrolyte and interface effect.  

 

For a pair of electrodes applied to the skin and for alternating current the equivalent circuit can also be 

simplified as:  

 
Equipment 

Sine wave generator, Oscilloscope, Resistors, Surface electrodes, Jelly.  

 

Methods 

Apply a pair of electrodes to the forearm using jelly but no skin abrasion (unprepared skin).  
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1. Connect the circuit as shown in figure 3.  

 
 

According to figure 3:  

 
 

2. Measure the electrode impedance by applying a 1 V p-p sine wave at a range of frequencies from 10 

Hz to 50 kHz (10, 100, 500, 1000, 5000, 10000, 50000, 100000, 500000, 1000000 Hz).  

3. Repeat step 1-3 for another pair of electrodes on well prepared skin.  

4. For each pair of electrodes also measure the any DC potential between the electrodes.  

 

Analysis  

1. Plot the electrode contact impedance against frequency both for unprepared and prepared skin on semi-

log graph paper.  

2. From the Impedance vs Frequency curves, determine the equivalent circuit for the electrodes on the 

assumption of a combination of two resistances and capacitor (figure 1). R can be determined from the 

high frequency part of the curve and S from the low frequency.  
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Appendix 

 

 

 

Fig: Pin Diagram of LM324 

 




