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Experiment No: 1 

Name of the Experiment: Study of the Unit Step Response of a Second Order System 

Simulated on a PC Using the 'MATLAB' Software 

 

Objectives: 

1) Introduction to Second Order System. 

2) To determine the response c(t) of a system for a unit step input r(t) = 1.0 and 

display the  same in time domain graphically.  

3) To determine various criteria of time-response such is undamped natural 

frequency ωn , damping ratio ζ, frequency of damped oscillation d, peak 

overshoot cp .time to reach the peak overshoot tp , per unit overshoot M0 = (cp- css) 

/css , first time to reach the steady state value t0 response settling. time ts and 

envelop settling time Ts. 

4) To observe the effects of varying system parameters or gain up to the response. 

 

Second Order Systems : 
  

In the speed control system, the plant was characterized by its time constant, which is 

determined by the inertia of the rotor and the viscous friction. This arrangement can be 

described mathematically by a first order differential equation.  

  

The position control system has an integration effect between velocity and position. This 

makes the position control servomechanism into a second order system.  

  

As a first order system is characterized by its time constant, it could be expected that a 

second order system would be characterized by two time constants. Although some 

second order systems can be described in this way, most of the systems dealt with in 

closed loop control cannot be described so simply.  

  

Following Fig shows how the step response changes as the proportional gain is increased 

in a typical second order system. It is obvious that, as the gain increased, the position 

control system became more and more oscillatory. 

 

When the gain is low, the response is sluggish and is said to be Over damped. An over 

damped response is characterized by two separate time constants.  

  

Curve b shows the fastest response this system can have without any oscillation. This 

response is said to be Critically Damped. A critically damped response is characterized 

by two time constants both of the same value.  
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Figure 1.1 : Response of a second order system with different gain. 

 

 

With higher gain, the response overshoots and oscillates. This type of response is said to 

be Under damped. An under damped response cannot be characterized by time constants. 

Mathematically it is described by a decaying sinusoid.  

  

Examining the above Fig, the "best" response would appear to be somewhere between 

curves b and c. Before we can predict the gain necessary to give a specified response, we 

need to know how to describe the behavior of a second order system.  

  

Under damped systems are often described by the amount the response overshoots and by 

the frequency at which it oscillates.  

 

There are two other parameters used to describe second order systems - Damping Factor 

and Natural Frequency of Oscillation.  
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To be able to predict the overshoot and frequency of oscillation of a closed loop system, 

we must develop how the different parameters are related to the gain and time constant of 

the plant being controlled. 

 

Overshoot and Damping Factor : 
  

Overshoot  

  

Overshoot is the amount by which a response goes beyond the steady state value before 

settling down.  

 

Overshoot can be measured from the step response. It is the ratio :  

Peak Output Change – Steady State Output Change 

Steady State Output Change 

 

Overshoot is usually stated as a percentage, which is the above ratio multiplied by 100.  

 
Figure 1.2: Parameters to describe a second order behavior. 
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Damping Factor  

  

In the equations describing system behavior, overshoot is not an easy parameter to handle. 

Another parameter called  Damping Factor is used and this gives an indication of the 

mount of overshoot in a system. Damping Factor has the symbol ζ (Zeta). ζ has a value of 

1 when the system is critically damped, less than 1 when underdamped and greater than 1 

when overdamped.  

 

 

ζ < 1     Underdamped – decaying oscillations   

ζ = 1     Critically damped – just no overshoot   

ζ > 1     Overdamped – system sluggish   
 

 

The objective of a control system design is often to achieve a fast response without any 

overshoot or with just a little overshoot. Systems are usually designed for ζ in the range 

0.7 to 1.  

  

The amount of overshoot is wholly dependent on the Damping Factor. Measuring 

overshoot allows the damping factor to be calculated and knowing ζ allows the overshoot 

to be calculated. They are linked by the equations:  

 

ζ =   
1

1 +  
𝜋

ln  𝑜𝑣𝑒𝑟𝑠 𝑕𝑜𝑜𝑡  𝑟𝑎𝑡𝑖𝑜  
  
 

 

 

Overshoot

 

ratio =

 

𝑒

−
 
𝜋ζ

 1−
 
ζ2 

   

⇒

   

%

 

Overshoot

 

ratio =

 

100 × 𝑒

−
 
𝜋ζ

 1−
 
ζ2 

 
 
Damped and Natural Frequencies of Oscillation 

 
  
Damped Frequency 

 

  
The frequency at which an underdamped system oscillates is called the Damped 

Frequency, ωd. This can be determined by measuring the time between successive 

positive peaks if, as shown in Fig 2.2, there is more than one cycle.

 

 

 

The inverse of the period of a cycle is its frequency in Hertz:

 

𝑓𝑑 =

 

1

𝑇𝑑
⇒ ω𝑑 = 2𝜋𝑓𝑑 =

 

2𝜋

𝑇𝑑
,where Tdis the period of the oscillation.

 

The time to the first peak, Tp, is half the period. The damped frequency can then be found 

by measuring the to the first peak:

 

ω𝑑 =
𝜋
𝑇𝑑
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Natural Frequency 

 

  
If there was no damping at all (ζ = 0), the system would continuously oscillate at a 

frequency which is called the Natural Frequency of the system. This is given the symbol 

ωn. The relationship between Natural and Damped frequencies is: 

 

 ω𝑛= 
ω𝑑

 1−

 

ζ2

 

 
ω𝑑 = ω𝑛 1 −

 

ζ2

 

 
It can be seen from Fig 2.1 that ωd

 

increases as the gain increases, which means that 

increasing the gain makes the system work faster but at the expense of increasing the 

overshoot.

 

 

Simulation: 

Firstly, The MATLAB commands used here can compute step response for a system as in 

Fig (a) below. However, for a closed loop system as in Fig.(b) the overall transfer 

function has to be expressed in the form of a single transfer function
)()(1

)(

sHsG

sG


 by the 

user using cloop  command (for unity feed back system) or feedback command.  

 

 

 

 

 

 

 

 

Procedure:  

1. Run the MATLAB package. Note that  “»”  is the prompt displayed automatically 

for the MATLAB user. 

2. Enter each of the numerator and denominator factors of chosen system‟s transfer 

function as follows 

 »num 1 = [coefficient  of s'' coefficient  of s
n-1.......

 coefficient of s
o 
constant term]; 

 »num2 = [similarly]; 

     G(s) R(s) C(s) 

Figure 1.3 (a): Open Loop System 

R(s)   G(s) 

 
C(s) 

H(s) 

Figure 1.3 (b) : Close Loop System 

+ 

- 
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»den 1 = [similarly]; 

»den 2 = [similarly]; 

and so on. 

In the numerator is only a constant value c≠0.0 then use: 

»num=c 

If the transfer function has more than one numerator or denominator factors, multiply 

them as follows to obtain s single numerator and denominator factor respectively. As 

for example: if 𝑇𝐹 =
(𝑛𝑢𝑚1)(𝑛𝑢𝑚2)

(𝑑𝑒𝑛1)(𝑑𝑒𝑛2)(𝑑𝑒𝑛3)
 then, 

»num = conv(num1, num2) 

»den4 = conv(den1, den2) 

»den = conv(den3, den4) 

If the number of such factors is less in number the multiplication can be done 

manually to obtain a single numerator or denominator factor. 

If the system is a unity feedback system, then to find out the close loop transfer 

function we use  

 »[num,den]=cloop(numg,deng) 

And for any feed back system we use 

 »[num,den]=feedback(numg,deng,numh,denh,+/-1) 

Where 𝐺 𝑠 =
𝑛𝑢𝑚𝑔
𝑑𝑒𝑛𝑔

,𝐻 𝑠 =
𝑛𝑢𝑚𝑕
𝑑𝑒𝑛𝑕

 and +/-1 represent positive/negative feedback. 

 

3. Find undamped natural frequency n and damping ratio   for the defined  system 

using the command as follows: 

»[wn.z] = damp(den) 

Here.  wn stores the value of n and z stores  . 

4. Define the time axis for c(t) vs. t from () to 30 seconds at an interval of 0.2 

seconds as follows: 

»t = 0:0.2:30; 

5. To compute e(t) at the defined times use the command: 

»y = step(num,den,t) 

where the vector stores the response values. 

6. Plot and display on the screen c(t) vs. t using the command: 

»plot (t,y) 

The plot can be made to have grid boxes on it as follows: 
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»grid 

The plot can also be displayed along with labels using the following commands: 

» title ( „Unit Step Response‟), ylabel(„c(t)‟, xlabel(„Time in seconds‟) 

7. To highlight a certain portion of the displayed plot define the portion on the x and 

y axes as follows and then display. 

»A = [Xmin, Xmax, Ymin, Ymax ] 

»axis (A) 

To restore back the original full plot just use the command: 

»axis auto. 

Warning: You must request your teacher to be with you before issuing the print 

command of the next step (8) 

8. After plotting the step response for the chosen system, get its hard copy by 

selecting 'Print' command from the 'File' of the Figure window. 

9. Estimate from each system's response curve and calculations:  the frequency of 

damped oscillation  d=n 1 − ζ2 ,  
peak overshoot cp, time to reach the peak 

overshoot tp, per unit overshoot M0=(cp-css )/css ,first time to reach the steady state 

value t0, response settling time ts and envelope settling time Ts for a tolerance 

margin of 3% and 5%  

𝑇𝑠 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠

ζn
≈ 

4

ζ
(2% error) = 

3

ζ
(5% error) 

Feedback Connection:

M = feedback(M1,M2) computes a closed-loop model M for the feedback loop.for the 

following system  

M1

M2

+
-

u y

Figure 1.3 (c) : Close Loop System 
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Negative feedback is assumed and the model M maps u to y. To apply positive feedback, 

use the syntax M = feedback(M1,M2,+1). 

[Wn,Z] = damp(M) returns vectors Wn and Z containing the natural frequencies and 

damping factors of the linear system M. 

 

Report: 

1) Record the response curve. n.  .d.. cp. tp. m0. t0. ts(2% and 5% tolerance), and Ts 

(2% and 5% tolerance) for the systems having the following transfer functions: 

a) 𝐺(𝑠) =
1

𝑠2+ 𝑏1𝑠+𝑏0
;H(s) =0 i.e. open loop system with b1=0.4, b0=1 

b) 𝐺(𝑠) =
1

𝑠2+ 𝑏1𝑠+𝑏0
;H(s) =1 with  b1=0.4, b0=1 

c) 𝐺(𝑠) =
𝐾1

𝑠(1+𝑠)(1+0.2𝑠)
;K1 = 0.83,H(s) =1  

2) Record the same for the system in 1(b) for various cases with b1=0.2, 0.6 and 1.0                            

respectively. Comment on the effects of variation of the parameter b1 which       

represents  the damping coefficient for a second  order system. 

 

      3)  Record the same for the system in 1(c) for various cases with K1=0.2, 0.4 and 5.5              

      respectively. Comment on the effects of variation of the forword gain K1. 
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Experiment No: 2 

Name of the Experiment: Determination of Time Response of a PC based DC motor 

 

Objectives: 

 
Having completed this experiment, students will be able to: 

 

  Measure the parameters of a plant using step tests  

  

  State the time model of the DC motor  

 

Introduction: 

 
We wish to determine a model which describes the time behavior of the plant using the 

'Black Box' approach. To do this, you will ask the motor to change speed and infer the 

relationship between input voltage and output speed from the way in which the motor 

responds. You will be measuring the Step Response of the motor.  

 

There are two parts to any output time response when there is a change in input:  

  

•  A Transient period which occurs immediately the input changes and during which the 

system seems to be dominated by something other than the input.  

  

•  A Steady State condition which is reached after the transient has died out. The system 

seems to have settled down to the influence of the input.  

  

The transient situation is produced by elements within the plant which cannot respond 

instantly. Mass in a mechanical system and capacitance in an electrical system both store 

energy so it takes time to change the velocity of a mass or to change the voltage across a 

capacitor.  

  

In the DC motor, it is the mass of the motor armature and all the disks and dials 

connected to the motor shaft which require energy to get them moving or stop them 

moving. Actually it is the inertia of these elements, not mass, since we are dealing with 

rotating bodies.  

 

The two parameters that define the model are Gain and Time Constant. Gain (K) is the 

Steady State relationship between input and output. Time Constant (τ) defines the 

Transient Time. 
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Procedures: 
1. Make the Hardware connection as shown in the following figure: 

 
2.  Start VCL and load CA06PE03. Make sure that following conditions are fulfilled. 
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3. Disengage the output potentiometer then switch power ON and Enable the motor. The 

output velocity trace (purple) on the PC shows what is called the Step Response (what 

happens when there is a step change in the input).  

 

4. The purple trace is the Step Response of motor speed. Observe that the speed does 

become constant after a time but initially lags behind the input. Expand the time scale by 

decreasing the rate to 10msec and click the x2 time multiplier. Click Freeze | Freeze. This 

freezes the display at the end of the current cycle. The 'Frozen' control box appears when 

the cycle ends. The motor can now be disabled and measurements made from the screen.  

 

You are going to measure the Gain and Time Constant which characterize the motor. The 

following figure overleaf shows the measurements to be made. The measurement facility 

is activated from the  Frozen control box by clicking  Time ON. The measurement lines 

and value boxes appear on the graph. 

 

 
 

 5. Measuring

 

Steady State Response :

 

 The steady state relationship between input and output is characterized by the Gain of the 

plant.

 

Gain, or Magnitude Ratio or Amplitude Ratio, is the ratio between input and output 

when they have reached a steady state. The spans have been measured when the output 

has reached a steady state so:

 

 𝐺𝑎𝑖𝑛 =

  

𝑂𝑢𝑡𝑝𝑢𝑡

 

𝑆𝑝𝑎𝑛

𝐼𝑛𝑝𝑢𝑡

 

𝑆𝑝𝑎𝑛
 

 

 

Input Span 

Input span is the amount by which the input changes. 

•  Select channel 1/Input/Dark Blue. The scale will show the input channel scale. 
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•  Select Line A by clicking within the A box. The box and the line will change color. 

 

  

•  Move the mouse until the pointer is pointing at the upper dark blue trace in the graph 

area. Click the left button and line A will move to where you are pointing. You can click 

again if you did not position the line exactly the first time. The A box indicates the level 

of the line. 

 

 

•  Click in the B box and, in the same way, position line B over the lower part of the dark 

blue trace. 

 

  

The difference between A and B is the Input Span.

 

 

Output Span 

 

  

Output span is the amount by which the output changes in response to the input changes. 

 

  

Change to channel 4/Velocity/purple and repeat the measurements on the purple trace. 

Line B should be positioned where the trace can be seen starting at the left of the graph.

 

 

 

6.

 

Measuring Transient Response :

 

  

There are a number of ways to characterize the transient response. These come under the 

general heading of 'Rise Time' but there are many different definitions of Rise Time. You 

will measure three different times

 

then we will see how these are related. 

 

  

Initial Slope Method 

 

  

•  Make sure that lines A and B are the final and initial values of trace 4 respectively. 

 

  

•  Click in the Slope box. The line from the beginning of the transient sloping up to the 

right

 

has changed to blue. This allows you to measure the initial slope of the velocity 

trace. The slope of the line can be changed by clicking in the graph area. The top of the 

line will move to the time at which you clicked.

 

 

•  Move the slope line until its slope is the same as that of the initial part of the transient, 

such that the blue line covers the initial part of the purple velocity trace line. 

 

  

•  Click in the Time box. The vertical time line is highlighted. 

 

  

•  Click where the slope line crosses line A. The time shown is the Time Constant 

measured by the initial slope method. 

Time Constant t1 =  ____________ seconds.
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Settling time method 

 

  

The time constant can also be calculated from the time it takes the transient to reach the 

final value. 

 

  

•  Move the Time line to the time at which the velocity trace first reaches its final value 

(when the purple trace reaches line A). 

 

  

The time shown is 5 time constants from the start of the transient .

 

 

Time Constant t2

 

=  _______________ seconds.

 

 

63% Method 

 

  

Another time measurement is the time it takes for the transient to change by 63%. 

 

 

•  Click the A box to highlight Line A and move it to the 63% level. You may not be able 

to set the line exactly owing to the screen resolution. Expanding the scale using the 

Magnify and Shift controls may help. The traces require to be redrawn using Freeze | 

Redraw option after Magnify or Shift are changes. 

 

  

•  Now click the Time box and move the  time line to the time at which the velocity trace 

reaches its 63%

 

level. The time shown is the Time Constant measured by the 63% 

method. 

 

  

Time Constant t3

 

=  _____________seconds.

 

 

Note:

 

Experience has shown us that the 63% measurement is more accurate than the

 

other two techniques so use t3 as the time constant in your model. 

 

 

7. The total Time response can be expressed mathematically as,

 

 

𝐶𝑕𝑎𝑛𝑔𝑒

 

𝑖𝑛

 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐶𝑕𝑎𝑛𝑔𝑒

 

𝑖𝑛

 

𝐼𝑛𝑝𝑢𝑡

 

× 𝐺𝑎𝑖𝑛

 

×

 

 1 −

 

𝑒
−

 

𝑡
𝑟  

 

or,

 

 

𝐶𝑕𝑎𝑛𝑔𝑒

 

𝑖𝑛

 

𝑂𝑢𝑡𝑝𝑢𝑡

=  𝐶𝑕𝑎𝑛𝑔𝑒

 

𝑖𝑛

 

𝐼𝑛𝑝𝑢𝑡

 

× 𝐺𝑎𝑖𝑛

 

 −  𝐶𝑕𝑎𝑛𝑔𝑒

 

𝑖𝑛

 

𝐼𝑛𝑝𝑢𝑡

 

× 𝐺𝑎𝑖𝑛

 

×

 

𝑒
−

 

𝑡
𝑟  

  

 

        Change in Output = Steady State Response –

 

Transient Response 

 

 

 

Report:

1. Draw the output response along with the step input as found in this experiment 

using graph paper. 

a. Calculate gain by showing input & output Span clearly.

b. Calculate time constant using three different methods.

2. A plant has a gain of 0.8 and time constant of 3 seconds. Using the normalized 

sketch of a step response, determine the output response (in volts) to a 2 volt step 

input after 1.5 seconds. 
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Experiment No: 3 

Name of the Experiment: Speed control of a DC servo system 

 

Basic Theory: 

A simplified diagram of a closed loop constant motor speed control system is shown in 

Figure 3-1. As the reference or control voltage is applied to the input of the comparator, 

and the Tacho generator produces a signal which is equivalent to the speed of the motor, 

the two, signals are compared at the input of the summing amplifier through addition of 

two signals with opposite polarity. The output of the comparator is, then, an error signal 

which represents the difference between the preset and actual speed. Because the error 

signal is out of phase to the reference signal, this signal compensates the motor speed in 

the Direction to achieve a constant speed. 

VOLTAGE 

COMPARATOR
AMPLIFIER

MOTOR CONTRON INPUT 

(REFERENCE VOLTAGE)
M

T

MOTOR

TACHO 

GENERATOR

SPEED FEEDBACK

 

Figure 3.1 : Basic constant speed feedback loop system. 

 

In general, the speed of a motor and the error signal, have the following relationship. 

θ0  = KE                           (3-1) 

Where,            θ 0 = the motor speed 

E = error signal 

  K = system gain 

The error signal is defined as: 

E = Vref - Kg θ0          (3-2) 

 

Where,  Vref  =  reference voltage 

Kg θ0 = output of the Tacho generator 

Replacing E in (3-1) with (3-2) yields; 

  θ0 =K(Vref-Kgθ0)        (3-3) 

  θ0= K. Vref-K. Kgθ0 
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  1=
𝐾.𝑉𝑟𝑒𝑓

θ0
 -K. Kg  

  
𝐾.𝑉𝑟𝑒𝑓

θ0
= 1+K. Kg  

  θ0=  
𝐾.𝑉𝑟𝑒𝑓

1+K.K𝑔
        (3-4) 

 

In case the K is very large in forward direction, Equation (3-4) is reduced to: 

  θ0= 
𝑉𝑟𝑒𝑓

K𝑔
         (3-5) 

From equation (3-5), it‟s clear that for a given Tacho generator constant Kg, the motor 

speed is linearly proportional to Vref only and is not dependent on the deviation of the 

system gain. This is the most beneficial advantage of a closed loop motor speed control 

system. 

Similar relationships can he developed for the error signal in a closed loop system. 

Replacing  o in (3-2) with (3-I). 

E = Vref– Kg. K. E        (3-6) 

   1 = 
𝑉𝑟𝑒𝑓

K𝑔
- Kg. K 

   
𝑉𝑟𝑒𝑓

𝐸
 = 1+K. Kg 

   E = 
𝑉𝑟𝑒𝑓

1+K.K𝑔
       (3-7) 

Equation (3-7) indicates that the error voltage E can be reduced when the gain K is 

increased. 

In a practical system, maintaining a high system gain means reduction of the dead band, 

as well as desensitizing motor speed to the load changes. Although large system gain is 

desired in general, the gain should be limited to an acceptable level. When the gain is 

beyond the acceptable level, the transient characteristics of the system will suffer, and it 

will cause irregular motor rotation. 

The relationships between load, error and motor speed are shown in Figure 3-2 at two 

different system gain levels. 

. 
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R
O

R

0

ERROR

 

SIGNAL

SPEED

(a)

 

Small

 

System

 

Gain (b)

 

Large

 

System

 

Gain

 
Figure 3.2 : Relationships between load, error and motor

 

speed.

 

 

In the equivalent system diagram of Figure 3-3, the output of

 

the Frequency-to-Voltage 

converter U-155 should be large enough to provide sufficient feedback signal. Otherwise, 

the motor will not run at constant speed. Also, when the gain of the amplifier U-153 is 

low, the system response will be slow and the “dead band” effect will get worse. 

However, in case the gain is too high, the system will become unstable.

 

SUM AMP

.

.

MTF/V

 

&

 

AMP

ATT

 

-

 

1

ATT

 

-

 

2

0 0

10 10

+15

-15
+15

U

 

-152 U

 

-153 U

 

-154

U

 

-161
U

 

-155
U

 

-151

ERROR

 

SIGNAL
INPUT OUTPUT

REFERENCE

 

INPUT

 

Figure 3.3 : Equivalent system diagram of the experiment.

 

 

 

 

Procedures:

1. Referring to Figure 3-4, arrange all the modules and an oscilloscope and connect 

them together.

2. Set the selector switch of U- 152 to “a”.

3. Set ATT-1 of U-151 to “9” and ATT‟-2 to “10”. This will minimize the reference 

setting, and the feedback will be almost zero.
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4.

 

Turn the power of U-156 on. Adjust U-157 to approximately one half of the 

maximum motor speed (2500 RPM).

 

5.

 

Attach the disk brake to the high speed shaft of the servo motor, and set the brake 

to “0”. Raise the brake setting by one increment, and each time, press

 

the brake 

button and measure the motor speed and the associated error signal.

 

6.

 

Set the U-151 ATT-2 to “5”. Adjust the motor speed to 2500 RPM, and repeat 

Step 5 Plot the data obtained in Figure 3.5 (a).

 

 

Notes:

 

The same motor speed can he obtained by increasing the reference signal level 

and decreasing the amplifier gain. However, this method will reduce the amount of 

feedback control signal and thus decrease the over-all ability to control the system.

 

 

7.

 

Using U-157 set the motor

 

speed to 2500 RPM. Set U-151 ATT-2 to “5”. Adjust 

ATT-l from “0” to “9”, and measure the error voltage at each point.

 

8.

 

For each point of ATT-1

 

setting, hold the high speed motor shaft by hand and 

repeat the experiments in Step 7. Compute the error deviation ratio as defined by 

the following equation and plot the results in Figure 3-4.

 

 

 

Note:

 

𝐸𝑟𝑟𝑜𝑟

 

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

 

𝑅𝑎𝑡𝑖𝑜

 

=

 

𝑒𝑟𝑟𝑜𝑟

 

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

 

𝑤𝑖𝑡 𝑕

 

𝑚𝑜𝑡𝑜𝑟

 

𝑠𝑡𝑎𝑙𝑙𝑒𝑑

𝑒𝑟𝑟𝑜𝑟

 

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

 

𝑤𝑖𝑡 𝑕

 

𝑚𝑜𝑡𝑜𝑟

 

𝑟𝑢𝑛𝑛𝑖𝑛𝑔
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( The higher ATT – 1 setting means the lower system gain )

Figure 3.4 : System Gain Vs. Error Voltage Characteristics.

Report:

1. Show all data in tabular form.

2. Plot the curves as stated in the procedure and comment on their shape.

3. Compare the experimental data with theoretical prediction.

4. List the advantages of using close loop speed control instead of open loop system.
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Figure 3.5: Wiring diagram of the Experiment 
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Experiment No: 04 

Name of the Experiment: Control of a conveyor system using Programmable Logic 

Controller (PLC) 

 

Introduction: 

In industry, many manufacturing process demand a sequence of operation which are to be 

performed repetitively. Early automation systems were mechanical in design, timing and 

sequencing being affected by gears and cams. Slowly these design concepts were 

replaced by electrical drives which were controlled by relays. Even these days the relay 

control has not yet been obsolete rather is favorite to the engineers in many industries 

who understand a process and its cont better using Relay Ladder diagram.. However, the 

relays suffer from a number of problems viz: large size, slower operation, contact wear, 

inability to accept more than one input simultaneously, and the necessity of replacing the 

whole control panel in case another set of operation different from those for which the 

relay are hard wired are to be performed. 

The Programmable Logic Controller 

The necessity of controlling ever increasing systems, engineers turned to computers. The 

computer however was not suited to the industrial environment and the use of the 

computer on the factory floor, was not possible, unless costly interfacing filtering was 

used. 

A programmable logic controller is a. solid-state device, designed to operate in a noisy 

environment and perform all the logic function previously achieved using 

electromechanical relays, drum switches, mechanical timers and counters. 

Basic PLC Operation: 

Figure below shows how the PLC controls a machine or plant. 
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The PLC System: 

The PLC, like a computer employs a microprocessor chip to do processing and memory 

chips to store the program. 

The PLC consists of three sections: 

1. A processor. 

2. Inputl0utput (110). 

3. A programming unit.  

The inputs and outputs are connected via interface. 

Basic PLC architecture: 

Figure below shows the basic architecture of a PLC. It contains a processor 

(microprocessor chips), memory chips and an arithmetic logic unit (ALU). It also 

contains all the input and output interfacing. The programming device either hand held, 

dedicated terminal of desktop, are remote from the PLC controller. 

 

 

Table 1 to 3 show the connection that should be made between the PC45 trainer, 

MicroLogix 1500 PLC and Sequence Switch Module in order to complete the 

programming exercise. 
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Table 1: 

PLC Input Addresses PC45 Connection Description 

I0 SWG Green Push Button 

I1 SWR Red Push Button 

I2 S1 Sensor 1 

I3 S2 Sensor 2 

I4 R1 Micro Switch 1 

I5 R2 Micro Switch 2 

I6 R3 Micro Switch 3 

 

Table 2: 

PLC Input Addresses PC45 Connection Description 

O4 E Conveyor (Forward) 

O5 R Conveyor (Backward) 

O6 LG Green Lamp 

O7 LR Red Lamp 

O8 C1 Cylinder 1 

O9 C2 Cylinder 2 

O10 C3 Cylinder 3 

 

Table 3: 

PLC Input Addresses Switch Sequence Module 

Connection 

Description 

I1 S1 Switch 1 

I8 S2 Switch 2 

I9 S3 Switch 3 

 

Other Connections: 

DC COMMO and DCCOM1 are shorted and connected to 0 volt of upper block. 

VAC VVDC4 and VAC DC5 are shorted and connection to 0 volt of lower block. 

Vsw of sequence switch module to be connected to 24 volt of lower block. 
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Note:  

When the cylinders of the PC45 Trainer are used, you will need to have the hand 

compressor pump connected. 

 

As the cylinders on the PC45n Trainer are operated, air pressure drops in the hand 

compressor, so additional air will need to be pumped in as the system is used. 

1. Short component should move the full length of the conveyor, being rejected by 

falling of the far end. 

2. If the red push button is pressed, the conveyor should stop and the red lamp 

should lit. 

3. Pressing green push button again should start the conveyor. 

[Note: Before running the program make sure that the sensors are properly adjusted. The 

transmitter and receiver of the sensors should be aligned properly for accurate operation. 

The voltage between S1 br S2 arid 0 V should be around 23 volts if they are adjusted 

properly. Check the voltage of S1 and S2 in upper block and adjust the sensors if 

necessary.] 

 

Procedures: 

PART 1 To run the conveyor in forward and backward direction. 

1. Open the RSLogix programming software by the following instruction. 

Start All Programs Rockwell Software RSLogix500English 

RSLogix500English. 

2. Open a new project. You will get a window with a list of processor name. Select a 

processor of Bul.1764 LSP Series C by scrolling down. A window will appear to 

develop the ladder logic diagram. 

3. Develop the ladder logic diagram as instructed and save it properly. 

4. Now you have to download the file. To download the file click on the drop-down 

arrow of the top-left dialogue box appearing offline and select download option. 

Before downloading the file make sure that the MicroLogixl500 PLC and the 

PC45 trainer is switched on. 

5. When the program has been downloaded, you will be asked if you want to go 

online. Click yes to go online. 

6. The top left dialogue box will change color and read REMOTE PROG. Click on 

the down arrow to the right of this and select Run from the drop down menu. 

Click on yes to change to run mode. 

7. Place the green push button to run the conveyor in forward direction. Press the 

Red push button to stop the conveyor. 
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8. Place the object at the right most position of the conveyor. When sensor 2 gets the 

object the conveyor should run in backward direction and it will continue to run in 

the backward direction unless you reprogram it. 

9. Modify Rung 03 of the ladder logic diagram as suggested and observe the 

movement of conveyor after sensing the object at sensor 2. The conveyor should 

run back and forth with the movement of the object in between sensor 1 and 2. 

10. To bring the program out of Run mode, click on the down arrow button to the 

right of the top left dialogue box and select program, then click on yes to return to 

program mode. 

11. Click on the file menu and select close to close the project. Now you are safe to 

exit the programming software. 

12. Remove the power from MicroLogix 1500 PLC and PC45 trainer. 

 

PART 2: To distinguish tall object from short object placed on a running conveyor. 

In this part the program should perform the following operation. 

1. The Green push button should be used to start the conveyor in the forward, right 

to left direction. 

2. While the conveyor is operating, the green lamp should be lit. 

3. Use sensor 1 on the conveyor to determine if a component is tall or short. (Should 

be set to detect a tall component) 

4. Sensor 2 on the conveyor is used to start timing for either a tall component or a 

short component. (Should be set to detect all components) 

5. Cylinder 2 (the center cylinder) is operated when a tall reaches it. (Remember that 

micro switch 2 is activated when cylinder 2 is operated) 

 

Report: 

Explain the Logic of the ladder diagrams programmed in both parts. 
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Ladder Logic Diagram for Part 1 

I : 0

0
Bul. 1764

Green Push Button
I : 0

1
Bul. 1764

Red Push Button

O : 0

4
Bul. 1764

Conveyor (Forward)

I : 0

0
Bul. 1764

Green Push Button

I : 0

1
Bul. 1764

Red Push Button

I : 0

3
Bul. 1764

Sensor 2

O : 0

5
Bul. 1764

Conveyor (Reverse)

O : 0

4
Bul. 1764

Conveyor (Forward)

O : 0

6
Bul. 1764

Green Lamp

O : 0

7
Bul. 1764

Red Lamp

O : 0

5
Bul. 1764

Conveyor (Reverse)

END

0000

0001

0002

0003

0004

Modification of Rung 03 :

O : 0

5
Bul. 1764

Conveyor (Reverse)

0003

I : 0

3
Bul. 1764

Sensor 2
O : 0

5
Bul. 1764

Conveyor (Reverse)
I : 0

0
Bul. 1764

Sensor 1
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Ladder Logic Diagram for Part 2 

I : 0

0
Bul. 1764

I : 0

1
Bul. 1764

L

O : 0

4
Bul. 1764

L

O : 0

12
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0000
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END
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Experiment No: 5 

Name of the Experiment: Study of the Root Locus of a System Simulated on a PC Using 

the  „MATLAB‟ Software 

 

Objectives: 

a. To draw the root locus of a given system for a specified range of gain. 

b. To analyze system stability from the root locus with the variation of gain. 

Introduction: 

For a closed loop system. the control ratio or overall transfer function is 

𝐶(𝑠)

𝑅(𝑠)
 = 

𝐺(𝑠)

1+𝐺 𝑠 𝐻(𝑠)
 

The stability of the system and the response c(t) depend upon the poles of C(s)/R(s) 

which are the roots or zeros of the characteristic equation 1+G(s)H(s)=0. The root locus 

of the system is a plot of these roots as a function of the gain. To work with the 

MATLAB the product G(s)H(s) is to be expressed as G(s)H(s)=
)(

)(

sQ

sKP
 , where the 

variable K represents the gain, P(s) and Q(s) are functions of s either in a single 

polynomial or in factored form. 

 

Procedures: 

1. Run the MATLAB package. Note that „»''is the prompt. Displayed automatically 

for the MATLAB user. 

2. Consider the following systems. K and K are the gain terms. Carry Out steps 3 to 

11 for each system. 

a. 𝐺 𝑠 =
𝐾(𝑠+1)

𝑠2+3𝑠+3.25
, 𝐻 𝑠 =1. 

b. 𝐺 𝑠 =
𝐾

𝑠(𝑠
2

/2600 +𝑠/26+1)
, 𝐻 𝑠 =  

1
0.04𝑠 +1

. 

3. Enter each of the numerator and denominator factors of the product G(s)H(s) as 

follows: 

»numl = of s coefficient of s
n

, coefficient of s
1n
,...coefficient of s

0
 or constant 

term]; 

»num2 = [similarly]; 

»den2 = [similarly]; 

»den1 = [similarly]; 

and so on 
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If the numerator is only a constant value c  0.0 then use 

»num = [c]; 

If the transfer function has more „than one numerator (for the given systems there 

is only one numerator factor) or denominator factors, multiply them as follows to 

obtain a single numerator and denominator factor respectively. As for example: 

»num = conv(numl,num2) 

»den4 = conv(den1 ,den2) 

»den = conv(den3,den4) 

 

4. Define a vector of desired gain values e.g., 0 to 5.0 at an interval of 0.5 as 

follows: 

»k = 0:0.5:5.0;  

 

5.  Obtain the root locus for the specified gain range using the following 

command: 

»r = rlocus (num, den, k); 

 

6.  To plot and display the root locus on the screen with the roots marked  „x‟ use: 

»plot (r, „x‟) 

The plot can be made to have grid boxes on it as follows: 

»grid 

The plot can be labeled as follows: 

»title („Root locus‟), xlabel („Real parts of the roots‟), ylabel („Imaginary parts of    

the roots‟) 

 

7.  To highlight a certain portion of the displayed plot define the portion   on the x 

and y axes as follows and then display. 

»A=[Xmin, Xmax, Ymin, Ymax] 

»axis (A) 

To restore back the original full plot just use the command: 

»axis auto 

8. Verify that the number of branches in the root locus is equal to v, the order of 

the denominator of G(s)H(s) i.e., for each value of gain k there will be v 

number of roots of 1+ G(s)H(s) =0. 
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9.

 

To see the effects of increased or decreased system gain upon the root locus, 

redefine the gain vector k in step 2. Then repeat steps 4 to 6.

 

 

10.

 

Check the root locus display if any branch has extended to the right of the 

origin i.e., the (0,0) coordinate.

 

If so then it means that the corresponding gain 

values have produced roots with positive real part and will produce an 

unstable response. These roots can be identified displaying the whole matrix „r‟ 

containing the roots as follows:

 

»r 

 

The corresponding rows containing the roots with positive real parts can be 

redisplayed one by one using the command:

 

»r (m,n)

 

where row number corresponds to the m-th gain and the column number 

represents the n-th root for this gain. Then the gain value can be displayed as

 

follows:

 

»k(m)

 

 

11. After plotting the root locus for the chosen sy get its hard copy by selecting

 

„Print‟ command from the „File‟ menu of the Figure window.

 

 

Observing response of a value from the root locus:

 

How do we design a feed-back controller for the system

 

by using the root 

locus method where our

 

design criteria are 5% overshoot and 1 second rise 

time?

 

H s =
Y(s)

U(s)
=

s + 7

s s + 5  s + 1 (s + 20)

 

Enter the transfer function and the command to plot the root locus:

 

   

num=[1 7];

 

                        den=conv (conv ( [ 1 0], [1,5] ),conv ( [ 1 15], [ 1,20 ] ) );

 

                       

 

rlocus(num,den)

 

 

axis( [-22 3 -15 15] )

 

The plot shows all possible closed-loop pole locations for a pure proportional 

controller. Obviously not all of those closed-loop poles will satisfy our design 

criteria. To determine what part of the locus is acceptable, we can use the 

command sgrid(Zeta,wn)

 

to plot lines of constant damping ratio and natural 

frequency. Its two arguments are the damping ratio(Zeta) and natural 

frequency(Wn)

 

[these may be vectors if you want to look at a range of acceptable 

values]. In our problem, we need an overshoot less than 5% (which means a 

damping ratio Zeta of greater than 0.7) and rise time of 1 second (which means a 

natural frequency Wn greater than 1.8) Enter in the matlab command window:

29



AUST/EEE

 

    

zeta=0.7;

 

    

wn=1.7;

 

    

Sgrid(zeta, wn)

 

In the plot, the two white dotted lines at about 45 degree angle indicate pole 

locations with Zeta=0.7; in between these lines, the poles will have Zeta> 0.7 and

 

outside of the lines Zeta< 0.7. The semi circle indicates pole locations with 

natural frequency Wn=1.8; inside the circle, Wn<1.8 and outside the circle>1.8.

 

Going back to our problem, to make the overshoot less than 5%, the poles have to 

be in between the two white dotted lines and to make the rise time shorter than 1 

second, the poles have to be outside of the white dotted semicircle. So now we 

know only the part of the locus outside of the semicircle and in between the two 

lines are acceptable. All the poles in this location are in left half plane, so the 

closed-loop system will be stable.

 

From the plot we see that there is part of the root locus inside the desired region. 

So in this case we need only a proportional controller to move the poles to the 

desired region. We can use rlocfind

 

command in Matlab to chose the desired poles 

on the locus:

 

    

[kp,poles]=rlocfind(num,den)

 

Click on the plot the point where you want the close loop pole to be. Since the 

root locus may has more than one branch, when you select a pole, you may want 

to find out where the other pole (poles) are. Remember they will affect the 

response too. 

 

In order to find out the step

 

response, you need

 

to know the closed loop transfer 

function. You could compute this using the rules of block diagrams or let Matlab 

do it for you:

 

   

[numc, denc]=cloop((kp)*num,den)

 

The two arguments to the function cloop are the numerator and denominator of 

the open-loop system. You need

 

to include the proportional gain that you have 

chosen. Unity feedback is assumed.

 

If you have non unity feedback situation, look at the help file for the feedback, 

which can find the closed-loop transfer function with a gain in the feedback loop.

 

Checlk out the step response of you closed ;oop system:

 

   

step(numc,denc)

 

As we

 

expected, this response has an overshoot less than 5% and a rise time less 

than 1 second.

 

Warning:

 

You must request your teacher to be with you before issuing the above print 

command.

 

Report:

Show the root locus for each system and find the range of gain which will produce 

system instability. Comment on the results obtained.

30



AUST/EEE

Experiment No: 6 

Name of the Experiment: Study of steady state error analysis of different Types of 

system. 

 

Theory: 

In many control system designs, we are specifically interested in the final, or steady state 

value of the output. This is known as steady state accuracy. Ideally, in the steady state, 

the output, y(t), equals the command signal, r(t), and the error is zero. This ideal situation 

is rarely met, and so we need to be able to determine the steady state error for any system. 

The steady state error is defined as: 

𝑒𝑠𝑠 = lim
𝑡→∞ 

𝑒(𝑡) =  lim
𝑡→∞ 

[𝑟 𝑡 − 𝑦 𝑡 ]
 

 

Only for unity feed back systems, the error is the comparator output signal and we can 

determine the steady state error by examining the open loop transfer function KG(s). By 

using final value‟ theorem it can be shown that 

𝑒𝑠𝑠 = lim
𝑠→∞ 

𝑠𝐸 𝑠 =  lim
𝑠→∞ 

  
𝑠

1 + 𝐺 𝑠 
 𝑅(𝑠) 

 

We are interested in the steady state error for step, ramp, parabolic, and higher order 

polynomial inputs, i.e 

𝑟 𝑡 =  
𝑡𝑛

𝑛!
 → 𝑅 𝑠 = 

1

𝑠𝑛 +1
  𝑛 = 0, 1 , 2 …… 

Therefore eurn 

 

𝑒𝑠𝑠 =  lim
𝑠→0 

 

𝑠

𝑠𝑛 +𝑠𝑛𝐺 𝑠 
 

For a unit step input (n=0), 𝑒𝑠𝑠 =  lim
𝑠→0 

 

1

1+𝐺 𝑠 
 

For higher order polynomial inputs, = 𝑒𝑠𝑠 =  lim
𝑠→0 

 

1

𝑠𝑛𝐺 𝑠 
 

If G(s) has no poles at origin, the G(0) is finite, which means that the step response error 

is finite and all other responses infinite. We define the system Type as the order of the 

input polynomial that the closed loop system can track with finite error. If G(s) has no 

poles at the origin, the closed system is Type 0 and can track a constant, one pole at origin 

results in a Type l system that can a ramp; two poles at the origin result in a Type 2 

system that can track a parabola etc. 

Because we deal with many e1ectrornechani systems, control engineers also define 

position, velocity and acceleration error constants as follows.  

𝐾𝑝 =  𝐺(0),   𝐾𝑣 =  lim
𝑠→0 

 𝑠𝐺(𝑠) ,  𝐾𝑎 =  lim
𝑠→0 

 𝑠2𝐺(𝑠) 
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Following Table shows the3 steady state errors for Type 0, 1, and 2 systems. 

Steady State Errors for Polynomial Inputs 

System Type  

Polynomial Degree 
0 1 2 

Step Input 
1

1 + 𝑘𝑝
0 0 

  
1

𝑘𝑣
 0 

    
1

𝑘𝑎

Procedures:

1.  Execute the following program for the system  

𝐾 = 1.5 and 𝐺 𝑠 =
1

𝑠 𝑠+1 (𝑠+2)
.  

The program will give three plot windows. Figure-1 is for step response, Figure-2 is 

for ramp response and Figure-3 is for parabolic response. Each figure will have 

subplots of original response and the steady state error. We use „step‟ command for 

finding the step response and „Isim command for finding the ramp and parabolic 

responses. 

2. The program also gives the steady state error for our considered each type. of 

input. Note down the steady state error and Y compare with the theoretically 

obtained steady. State error using the above table. Assignment:  

Reports: 

1. What is the „Type number‟ of our system? Discuss your findings of each type of 

obtained plot 

2. Run the program for the following systems: 

System-1 : 𝐾 = 1 , 𝐺 𝑠 =
10

 0.2𝑠+1 (0.5𝑠+2)
.  

Syestem-2: = 1 , 𝐺 𝑠 =
12

𝑠 𝑠+5 (𝑠2+2𝑠+2)
. 

What are the type numbers of the above two systems? Get the hard copy of the 

plots for the above two systems and discuss the plot in each case. 

3. What is the effect of stability of the closed loop system on the value of steady 

state error? 

Ramp Input 

Parabolic Input 
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% 1 for this

% vector to match the ma

% numerator and denominator.

% ignores the lines having % at the time of simulation.

% their errors, steady state errors with respect to time.

 

% To observe the step, ramp and parabolic response and 

 

% Given transfer function, G=1.5/s(s+1(s+2) 

% Numerator=1.5 

% Denominator= s(s+1(s+2) 

% The sign '%' indicates a comment in matlab. Matlab 

 

  

% Detail program is given below. 

num1=1.5; 

den1=[1 3 2 0]; 

[num, den]=cloop(num1,den1); 

% To get the close loop transfer function. 

H=tf(num,den); 

% H is the overall transfer function taking close loop 

 

t=linspace(0,60,2000)'; 

% Defines time vector from 0 to 60 having 2000 values. 

% This time is transposed by the ' sign to get a column 

trix dimension for addition or subtraction.

 

 

% Step response 

u=ones(length(t),1); 

% Defines a unity vector of row size length(t) and single column.

 

% length(t) returns the number of t values, defines the step signal.

 

ys=step(H,t); 

% Gives step response 

figure(1); 

subplot(2,1,1), plot(t,u,t,ys,'--'); 

% Divides the window in two row and column and plots in row 

 

% command. 

% Plots the input end response vs time. 

grid 

eu=u-ys; 

% error= input-response 

eu_ss=eu(length(eu)) 

% Finds the final value of the error, that is the steady 

state value. 

subplot(2,1,2), plot(t, eu); 

% Plots in 2nd row, Plots error vs time signal 

grid 
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% Ramp Response 

r=t; 

% defines the ramp signal 

yr=lsim(H,r,t); 

% lsim is the keyword for the ramp and parabolic analysis. 

% Basically for the analysis of linear system 

figure(2); 

subplot(2,1,1), plot(t,r,t,yr,'--'); 

grid 

er=r-yr; 

er_ss=er(length(er)) 

subplot(2,1,2), plot(t,er); 

grid 

 

% Parabolic Response 

p=(t.*t)/2; 

yp=lsim(H,p,t); 

figure(3); 

subplot(2,1,1), plot(t,p,t,yp,'--'); 

grid 

ep=p-yp; 

ep_ss=ep(length(ep)) 

subplot(2,1,2), plot (t,ep); 

grid 
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Experiment No: 7 

Name of the Experiment: Position Control Using a DC Servo System 

 

Theory: 

Error Signals in a Position Controller 

The basic function of an angular position controller is to provide an output angular 

position signal which precisely follows the input angular position signal. The input or 

output position information is expressed in terms of the selected angle around a circle. 

To achieve the control function, it is necessary to rotate a motor until the signal detected. 

for the motor position is equal to the signal representing the reference or the input 

position. A potentiometer is used to convert the angular position to an equivalent 

electrical signal. Figure 7.1 shows a circuit diagram which utilizes potentiometers as an 

angle-to-voltage converter. 

- A

+15 -15

Input Axis Output Axis

Resistance 

Wire

Error Voltage

θi
θoPi Po

(θi - θo) 

Ke (θi - θo) 

 

Figure 7.1: Circuit Diagram of an Angular Error Detector Using Potentiometers. 

 

The Pi in the figure is the input potentiometer, and P0 the output potentiometer. The 

amplifier (-A) is configured as an inverting amplifier. Due to the polarity applied to Pi 

and P0 when the input and output positions are identical, the output of the amplifier 

becomes zero. 

In general, when the angular position of Pi is i and   0 is the angular position of P0. Also 

the relative angular position error between Pi and P0 is defined as ( 0 i ). The converted 

and amplified output of the error from the amplifier can be set to Ke( 0 i ), where Ke 

represents a conversion factor. Ke can be determined for a given system when the actual 

output voltage of the amplifier is measured. 

A closed loop control system can be formed when the error signal is further amplified 

and applied to a motor. As the motor reacts to the incoming error signal, and also the 

motor is coupled to the output potentiometer P0 the loop is closed. As the loop is closed, 
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error detection and associated motor reaction processes continue until the error signal is 

reduced to zero. 

 

Closed Loop Position Controller: 

In a closed loop position controller system, the positional information from an output 

potentiometer (P0) which is mechanically coupled to a motor is fed back to a control 

amplifier. Then, the reference position input from the input potentiometer (Pi) is 

combined with the feedback signal at the input of the amplifier which drives the motor in 

proportion to the difference between the two, signals. When the two positions are 

identical, the output of the amplifier becomes zero. 

A simplified system diagram of a closed loop position controller which will be used in 

this experiment is shown in Figure 7.2. 

SUM
FRE

AMP

SERVO

AMP
M

+15

-15

+15

-15

INPUT POISTION SELECT OUTPUT POISTION SELECT

A1
A2 A3 MOTOR

POPI
R1

R2

 

 

Figure 7.2: A Closed Loop Position Controller 

There are three amplifiers in Figure 7.2. The A1 is an error signal generator, A2 is an error 

signal amplifier and A3 is the driver for the motor M. As Pi is turned away from P0, the 

difference between the two potentiometer voltages becomes an error signal which 

appears at the input‟ of A1 The error signal is further amplified through A2 and A3, and 

drives the motor in the direction to reduce the error voltage between Pi and P0 Therefore, 

as Pi is turned clockwise, P0 follows the, same direction. This feedback action continues 

until the output of A1 is reduced to zero. At this point, the voltage measured at Pi and P0 

are same but in opposite polarity. For example, if Pi is at +3V, then P0 is at -3V, making 

the sum of two zero. 

The final relative position between Pi and P0 depends upon the gain of the amplifiers. For 

a large gain, the position of P0 can be almost equal to the position of Pi But when the gain 

is not sufficient, there can be an offset in the relative position, and also there may be no 

output initially until the input exceeds a certain value. The range of input for which there 

is no output is the “deadband and for a position controller. 
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Figure 7.3: Wiring diagram of the Experiment 
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Procedures: 

1) Referring to Figure 7-3, arrange the modules, including coupling of U- 158 to U-

161, and connect them together. 

2) Set U-152 switch to “a” and U-151 to “10”. Turn the power of U-156 on. Set U-

157 dial to 180 degrees. 

3) Adjust U-153 to make the output of U-154 zero. Once the adjustment is done, do 

not alter U-153 setting. 

 

4) 4 Set U-151 to „9' Within ±20 degrees from the original 180 degree setting turn 

U-157 either clockwise or counterclockwise, and see if U-158 follows the 

movement U-158 motion should lag U-157. In case U-158 leads U-157, switch 

the wires of U-161 motor. 

5) Turn U-157 clockwise from 0 degree position by 10 degree increment up to 150 

degrees. Measure the angle of U-158 ( 0 ) at each position of U-157 ( i ) Note 

down the deadband. Calculate the offset error angle between U-157 and U-158 at 

each position. Record all the results in a tabular form as given below. Repeat the 

measurements with U-157 turned counterclockwise from 0 degree position. . 

6) Increase the system gain by setting U-151 to 7, 5, 3 and 1. At each U-151 setting, 

repeat Step 5 experiment. Observe the change in offset error angle and de as a 

function of the system gain. 

 

Data Taable: 

 

U-151 Setting i  0  
Offset error 

angle= i - 0  
Deadband 
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Reports: 

1. Show all the results in tabular form. 

2. Plot 0  vs. i for different values of U-151 setting (inversely related to system 

gain) on the same graph paper. Use separate graphs for clockwise and 

counterclockwise direction of rotation. 

3. Plot dead band vs. U-151 setting. 

4. From the results obtained, comment on the change in offset error angle as a 

function of the sys gain. Also comment on the relationship between system gain 

and dead band. 
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Experiment No: 8 

Name of the Experiment: Study of PID (Three-Term) Control Using PC Based Servo-

System 

 

Objectives: 

 
Having completed this experiment students will be able to: 

 

 Define the purpose of Three-Term Control 

 Explain the effects of Proportional Band, Integral Action and Derivative Action 

 

Introduction: 

 
In the simplest feedback control system the control signal is directly proportional to the 

deviation (error) i.e. the difference between the reference input and the feedback signal. 

However in the sophisticated control systems to improve the steady state and transient 

performance respectively an integral and a derivative of the error (e) are added to the 

proportional term to make a composite control or drive signal (u). Mathematically, 

 

𝑢 = 𝑘𝑐𝑒 +  𝑘𝑖  𝑒𝑑𝑡 +  𝑘𝑑  
𝑑𝑒

𝑑𝑡
 

    
Where, kc, ki and kd are gain of proportional, integral and derivative blocks respectively. 

 

 
To improve the steady state performance means, the reduction of error (also termed offset) 

and improvement of transient response is the enhanced stability through reduction of 

oscillation and settling time. 
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Procedures: 
1. Make the Hardware connection as shown in the following figure: 

 
2.  Start VCL and load CA06PE09. Make sure that following conditions are fulfilled. 

 
3. Set Integral time constant (Itc) Off and Derivative time constant (Dtc) to 0. The 

controller is now proportional only. Where Itc=Ti =1/ki and  Dtc=Td =kd. The proportional 

control is marked PB. This stands for Proportional Band. Proportional Band is the 

inverse of gain. When expressed as a percent, 

 

%𝑃𝐵 = 
100

𝐾𝑐
 

 

This nomenclature is a result of the origins of PID control. 
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4. Set PB to 100% (KC = 1). Switch on the system.  

 

5. Measure the error between the input (ch1 dark blue) and the velocity (ch4 purple). 

Also measure the time constant of the output and the settling time. Note down the values 

in the table 8.1. 

 

Observation 

No. 

PB (%) Itc Dtc Error= input -output Time 

constant 

(τ) 

Settling 

time (ts) 

 

 

 

 

 

 

 

      

 

 

6. Repaet step 5 by setting PB to 40%.( Kc= ______ ) 

 

7. Dcrease the PB to 4% (controller gain ,Kc=______). Repeat step 5. 

 

8. Decrease the input Level to 30% and set the PB to 40%. Integral time constant (Itc) to 

1 second and click the On/Off box to bring in the Integral controller. Repeat step 5. 
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9. Decrease the Integral time constant until a good response is obtained. Repeat step 5. If 

the integral goes off scale and the system will not respond, click the Itc to Off  then back 

to On. This resets the integrator. 

 

10. Change the Plant to Process. The computer is now simulating a more complicated 

plant. Set PB = 30% and Itc = 0.24s. The Output should be showing an oscillatory 

transient. Increase the Derivative time constant (Dtc) until only a small overshoot can be 

seen. Repeat step 5. 

 

11. Set Itc = 0.24s. and Dtc=0.1 sec. Repeat step 4-7.  

 

Reports: 

 
1. Show all the results in tabular form. 

2. Comment on effects of only proportional control on the steady state and transient 

response. 

3. Comment on the effect of P+I control and effects of increasing and decreasing the 

value of Ti for a given PB. 

4. Comment on the effect of P+I+D control of a second order process. Also 

comment on the effect of derivative control alone for a fixed value of integral and 

proportional block.  

5. Comment on the effect of proportional control alone for a fixed value of integral 

and proportional block.  

 

 

 

 

43




