
AUST/EEE

Ahsanullah University of Science and Technology

Department of Electrical and Electronic Engineering

LABORATORY MANUAL

FOR

ELECTRICAL AND ELECTRONIC SESSIONAL COURSES

Student Name :

Student ID :

Course no : EEE 3218

Course Title : Digital Signal Processing Lab

For the students of

Department of Electrical and Electronic Engineering

3rd Year, 2nd Semester

AUST/EEE

An Overview of DSP Lab

SIGNALS, WAVES, AND DIGITAL PROCESSING

Two of the human senses, sight and hearing, work via the detection of waves. Useful
information from both light and sound is gained by detection of certain characteristics of these
waves, such as frequency and amplitude. Modern telecommunication depends on transducing
sound or light into electrical quantities such as voltage, and then processing the voltage in many
different ways to enable the information to be reliably stored or conveyed to a distant place and
then regenerated to imitate (i.e., reconstruct) the original sound or light phenomenon.

 For example, in the case of sound, a microphone detects rapid pressure variations in air and
converts those variations to an output voltage which varies in a manner proportional to the
variation of pressure on the microphone’s diaphragm. The varying voltage can be used to cut a
corresponding wave into a wax disc, to record corresponding wave-like variations in magnetism
onto a ferromagnetic wire or tape, to vary the opacity of a linear track along the edge of a
celluloid film (i.e., the sound-track of a motion picture film) or perhaps to modulate a carrier
wave for radio transmission.

In recent decades, signal processing and storage systems have been developed that use
discrete samples of a signal rather than the entire continuous time domain (or analog) signal.
Several useful definitions are as follows:

• A sample is the amplitude of an analog signal at an instant in time.

• A system that processes a signal in sampled form (i.e., a sequence of samples) is known as a
 Discrete Time Signal Processing System.

• In a Digital Signal Processing system, the samples are converted to numerical values, and
 the values (numbers) stored (usually in binary form), transmitted, or otherwise processed.

The difference between conventional analog systems and digital systems is illustrated in Fig. 1.
At (a), a conventional analog system is shown, in which the signal from a microphone is sent
directly to an analog recording device, such as a tape recorder, recorded at a certain tape
speed, and then played back at the same speed some time later to reproduce the original
sound. At (b), samples of the microphone signal are obtained by an Analog-to-Digital
Converter (ADC), which converts instantaneous voltages of the microphone signal to
corresponding numerical values, which are stored in a digital memory, and can later be sent to a
Digital-to-Analog Converter (DAC) to reconstruct the original sound.

In addition to recording and reproducing analog signals, most other kinds of processing which
might be performed on an analog signal can also be performed on a sampled version of the
signal by using numerical algorithms. These can be categorized into two broad types of
processing, time domain and frequency domain, which are discussed in more detail below.

2

AUST/EEE

ADVANTAGES OF DIGITAL SIGNAL PROCESSING

The reduction of continuous signals to sequences of numerical values (samples) that can be
used to process and/or reconstruct the original signal, provides a number of benefits that cannot
be achieved with continuous or analog signal processing. The following are some of the benefits
of digital processing:

Figure 1: (a) Conventional analog recording and playback system; (b) A digital recording and
playback system.

1. Analog hardware, such as amplifiers, filters, comparators, etc., is very susceptible to
noise and deterioration through aging. Digital hardware works with only two signal levels
rather than an infinite number, and hence has a high signal to noise ratio. As a result,
there is little if any gradual deterioration of performance with age (although as with all
things, digital hardware can suddenly and totally fail), and copies of signal files are
generally perfect, absent component failure, media degeneration or damage, etc. This is
not true with analog hardware and recording techniques, in which every copy introduces
significant amounts of additional noise and distortion.

2. Analog hardware, for the most part, must be built for each processing function needed.
With digital processing, each additional function needed can be implemented with a
software module, using the same piece of hardware, a digital computer. The computing
power available to the average person has increased enormously in recent years, as
evidenced by the incredible variety of inexpensive, high quality devices and techniques
available. Hundreds of millions or billions of operations per second can be performed on
a signal using digital hardware at reasonable expense; no reasonably-priced alternative
exists using analog hardware and processing.

3

AUST/EEE

3. Analog signal storage is typically redundant, since wave-related signals (audio, video,
etc.) are themselves typically redundant. For example, by taking into account this
redundancy as well as the physiological limitations of human hearing, storage needs for
audio signals can be reduced up to about 95%, using digitally-based compression
techniques, such as MP3, AC3, AAC, etc. Digital processing makes possible highly
efficient security and error-correction coding. Using digital coding, it is possible, for
example, for many signals to be transmitted at very low power and to share the same
bandwidth. Modern cell phone techniques, such as CDMA (Code Division Multiple
Access) rely heavily on advanced, digitally-based signal processing techniques to
efficiently achieve both high quality and high security.

DSP NOMENCLATURE AND TOPICS

Figure 1.2 shows a broad overview of digital signal processing. Analog signals enter an ADC
from the left, and samples exit the ADC from the right, and may be 1) processed strictly in the
discrete time domain (in which samples represent the original signal at instants in time) or they
may be 2) converted to a frequency domain representation (in which samples represent
amplitudes of particular frequency components of the original signal) by a time-to-frequency
transform, processed in the frequency domain, then converted back to the discrete time domain
by a frequency-to-time transform. Discrete time domain samples are converted back to the
continuous time domain by the DAC.

Note that a particular signal processing system might use only time domain processing, only
frequency domain processing, or both time and frequency domain processing, so either or both
of the signal processing paths shown in Fig. 2 may be taken in any given system.

Figure 2: A broad, conceptual overview of digital signal processing.

TIME DOMAIN PROCESSING

Filtering, in general, whether it is done in the continuous domain or discrete domain, is one of
the fundamental signal processing techniques; it can be used to separate signals by selecting or
rejecting certain frequencies, enhance signals (such as with audio equalization, etc.), alter the
phase characteristic, and so forth. Hence a major portion of the study of digital signal
processing is devoted to digital filtering. Filtering in the continuous domain is performed using

4

AUST/EEE

combinations of components such as inductors, capacitors, resistors, and in some cases active
elements such as op amps, transistors, etc. Filtering in the discrete or digital domain is
performed by mathematically manipulating or processing a sequence of samples of the signal
using a discrete time processing system, which typically consists of registers or memory
elements, delay elements, multipliers, and adders. Each of the preceding elements may be
implemented as distinct pieces of hardware in an efficient arrangement designed to function for
a particular purpose (often referred to as a Pipeline Processor), or, the equivalent functions of
all elements may be implemented on a general purpose computer by specifically designed
software.

FREQUENCY TRANSFORMS

A time-to-frequency transform operates on a block of time domain samples and evaluates the
frequency content thereof. A set of frequency coefficients is derived which can be used to
quantify the amplitudes (and usually phases) of frequency components of the original signal or
the coefficients can be used to reconstruct the original time domain samples using an inverse
transform (a frequency-to-time transform). The most well-known and widely-used of these
transforms is the Discrete Fourier Transform (DFT), usually implemented by the FFT (for Fast
Fourier Transform), the name of a class of algorithms that allow efficient computation of the
DFT.

FREQUENCY DOMAIN PROCESSING

Most signal processing that can be done in the time domain can be also equivalently done in the
frequency domain. Each domain has certain advantages for a given type of problem. Time
domain filtering, for example, can be performed using frequency transforms such as the DFT,
and in certain cases efficiency can be greatly improved using this technique. A second use is in
digital filter design, in which the desired filter frequency response is specified in the frequency
domain, i.e., as a set of DFT coefficients, for example. Yet a third and very prevalent use is
Transform Coding, in which signals are coded using a frequency transform (usually eliminating
as much redundant information as possible) and then reconstructed from the transform
coefficients. Transform Coding is a powerful tool for compression algorithms, such as those
employed with MP3 (MPEG II, Level 3) for audio signals, JPEG, a common image compression
format, etc. The use of such compression algorithms has revolutionized the audio and video
fields, making storage of audio and video data very economical and deliverable via Internet.

REFERENCE BOOKS

Digital Signal Processing Using Matlab V4 ‐ Ingle and Proakis
Digital Signal Processing ‐ Computer Based Approach ‐ Sanjit K. Mitra
Digital Signal Processing using MATLAB ‐ André Quinquis
Digital Filter Design Using Matlab ‐ Timothy J. Schlichter

5

AUST/EEE

Discrete Signals and Concepts
DISCRETE SEQUENCE NOTATION

Digital Signal Processing must necessarily begin with a signal, and most signals, such as
sound, images, etc., originate as continuous-valued (or analog) signals, and must be converted
into a sequence of samples to be processed using digital techniques. Figure 3 depicts a
continuous-domain sine wave, with eight samples marked, sequentially obtained every 0.125
second. The signal values input to the ADC at sample times 0, 0.125, 0.25, 0.375, 0.5, 0.625,
0.75, etc., are 0, 0.707, 1, 0.707, 0, -0.707, -1, etc.

The samples within a given sample sequence are normally indexed by the numbers 0, 1, 2, etc.
which represent multiples of the sample period T. For example, in Fig. 3, we note that the
sample period is 0.125 second, and the actual sampling times are therefore 0 sec., 0.125 sec.,
0.25 sec., etc. The continuous sine function shown has the value

f (t) = sin(2πf t)

where t is time, f is frequency, and in this particular case, f = 1 Hz. Sampling occurs at times nT
where n = 0, 1, 2,...and T = 0.125 second. The sample values of the sequence would therefore
be sin(0), sin(2π(T)), sin(2π(2T)), sin(2π(3T)), etc., and we would then say that s[0] = 0, s[1] =
0.707, s[2] = 1.0, s[3] = 0.707, etc. where s[n] denotes the n-th sequence value, the amplitude of
which is equal to the underlying continuous function at time nT (note that brackets surrounding a
function argument mean that the argument can only assume discrete values, while parentheses
surrounding an argument indicate that the argument’s domain is continuous). We can also say
that

s[n] = sin[2πnT]

Figure 3: An analog or continuous-domain sine wave, with eight samples per second marked.

LAB‐1

6

AUST/EEE

This sequence of values, the samples of the sine wave, can be used to completely reconstruct
the original continuous domain sine wave using a DAC. There are, of course, a number of
conditions to ensure that this is possible, and they are taken up in detail in the next chapter. To
compute and plot the sample values of a 2-Hz sine wave sampled every 0.05 second on the
time interval 0 to 1.1 second, make the following MathScript call:

t = [0:0.05:1.1]; figure; stem(t,sin(2*pi*2*t))

where the t vector contains every sample time nT with T = 0.05. Alternatively, we might write

T = 0.05; n = 0:1:22; figure; stem(n*T,sin(2*pi*2*n*T))

both of which result in Fig. 4.

Figure 4: A plot of the samples of a sine wave having frequency 2 Hz, sampled every 0.05
second up to time 1.1 second.

USEFUL SIGNALS, SEQUENCES, AND CONCEPTS

SINE AND COSINE

We saw above that a sine wave of frequency f periodically sampled at the time period T has the
values

s[n] = sin[2πf nT]

Once we have a sampled sine wave, we can mathematically express it without reference to the
sampling period by defining the sequence length as N. We would then have, in general,

s[n] = sin[2πnk/N]

7

AUST/EEE

where n is the sample index, which runs from 0 to N −1, and k is the number of cycles over the
sequence length N. For the sample sequence marked in Fig. 2.1, we would have

s[n] = sin[2πn2/16]

where we have noted that there are two full cycles of the sine over 16 samples (the 17th sample
is the start of the third cycle). The correctness of this formula can be verified by noting that for
the 17th sample, n = 16, and s[16] = 0, as shown. Picking another sample, for n = 2, we get s[2]
= sin[2π(2)2/16] = sin[π/2] = 1, as shown.
A phase angle is sometimes needed, and is denoted θ by in the following expression:

s[n] = sin[2πnk/N + θ]

Note that if θ = π/2, then
s[n] = cos[2πnk/N]

We can illustrate this by generating and displaying a sine wave having three cycles over 18
samples, then the same sine wave, but with a phase angle of π/2 radians, and finally a cosine
wave having three cycles over 18 samples and a zero phase angle. A suitable MathScript call,
which results in Fig. 5, is

n = 0:1:17; y1 = sin(2*pi*n/18*3); subplot(311); stem(n,y1);
y2 = sin(2*pi*n/18*3 +pi/2); subplot(312); stem(n,y2);
y3 = cos(2*pi*n/18*3); subplot(313); stem(n,y3)

Figure 5: (a) Three cycles of a sine wave over 18 samples, with phase angle 0 radians; (b)
Same as (a), with a phase angle of π/2 radians; (c) Three cycles of a cosine wave over 18
samples, with a phase angle of 0 radians.

8

AUST/EEE

Problem: 1
Write a Matlab script to plot the signal x(n) = cosωon for ωo = 0, π/2, π/8, π/4, π/2, π. The output
should look like the Figure 6.

Figure 6: Signal x(n) = cosωon for various values of frequency ωo.

Problem: 2
 Write a Matlab script to plot the signal x(n) = Can for (i) C and a are real for a > 1, 0< a< 1 a = 1,
a < -1, -1 < a < 0 and a = -1 (ii) C complex, a Complex with Unity Magnitude [C = Aejφ and
a = ݁௝Ω௢] (iii) Both C complex, a Complex [C = Aejφ and a = ݁Σ௢ା௝Ω௢]. The output should look
like the Figure 7.

Figure 7: Signal x(n) for C and a are real for a > 1, 0< a< 1 a = 1, a < -1, -1 < a < 0 and a = -1.

9

AUST/EEE

Figure 7: Signal x(n) for C complex, a Complex with Unity Magnitude [C = Aejφ and
a = ݁௝Ω௢]

Figure 7: Signal x(n) for both C complex, a Complex [C = Aejφ and a = ݁Σ௢ା௝Ω௢].

10

AUST/EEE

OPERATION ON SEQUENCES

Certain operations on two sequences, such as addition and multiplication, require that the
sequences be of equal length, and that their proper positions in time be preserved. Consider the
sequence x1 = [1,2,3,4], which was sampled at sample time indices n1 = [-1,0,1,2], which we
would like to add to sequence x2 = [4,3,2,1], which was sampled at time indices n2 = [2,3,4,5].
To make these two sequences equal in length, we’ll prepend and postpend zeros as needed to
result in two sequences of equal length that retain the proper time alignment. We see that the
minimum time index is -1 and the maximum time index is 5. Since x1 starts at the minimum time
index, we postpend zeros to it such that we would have x1 = [1,2,3,4,0,0,0], with corresponding
time indices [-1,0,1,2,3,4,5]. Similarly, we prepend zeros so that x2 = [0,0,0,4,3,2,1], with the
same total time or sample index range as the modified version of x1. Figure 2.4 depicts this
process. The sum is then

x1 + x2 = [1,2,3,4,0,0,0] + [0,0,0,4,3,2,1] = [1,2,3,8,3,2,1]

and has time indices [-1,0,1,2,3,4,5].

These two ideas, that sequences to be added or multiplied must be of equal length, but also
properly time-aligned, lead us to write several MathScript functions that will automatically
perform the needed adjustments and perform the arithmetic operation.

The following script will perform addition of offset sequences y1 and y2 that have respective time
indices n1 and n2 using the method of prepending and postpending zeros. The function
[y,n] = sidadd(y1, n1, y2, n2) works the same way, with the addition operator (+) in
the final statement being replaced with the operator for multiplying two vectors on a sample-by-
sample basis, a period following by an asterisk (.*).

LAB‐2

11

AUST/EEE

TYPES OF SEQUENCES
THE UNIT IMPULSE (DELTA) FUNCTION

The Unit Impulse or Delta Function is defined as δ[n] = 1 when n = 0 and 0 for all other values
of n. The time of occurrence of the impulse can be shifted by a certain number of samples k
using the notation δ[n − k] since the value of the function will only be 1 when n - k = 0.

THE UNIT STEP FUNCTION

The Unit Step Function is defined as u[n] = 1 when n ≥ 0 and 0 for all other values of n. The
time of occurrence of the step (the value 1) can be shifted by a certain number of samples k
using the notation u[n − k] since the value of the function will only be 1 when n - k ≥ 0.

PERIODIC SEQUENCES

A sequence that repeats itself exactly is called periodic. A periodic sequence can be generated
from a given sequence S of length M by using the outer vector product of the sequence in
column vector form and a row vector of N ones. This generates an M-by-N matrix each column

12

AUST/EEE

of which is the sequence S. The matrix can then be converted to a single column vector using
MathScript’s colon operator, and the resulting column vector is converted to a row vector by the
transposition operator, the apostrophe. The following function will generate n periods of the
sequence y:

function nY = LVMakePeriodicSeq(y,N)
% LVMakePeriodicSeq([1 2 3 4],2)
y = y(:); nY = y*([ones(1,N)]); nY = nY(:)’;

To illustrate use of the above, we will generate a sequence having three cycles of a cosine
wave having a period of 11 samples. One period of the desired signal is

cos(2*pi*[0:1:10]/11)

and a suitable call that computes and plots the result is therefore

N= 3; y = [cos(2*pi*[0:1:10]/11)]’;
nY = LVMakePeriodicSeq(y,N); stem(nY)

FOLDING

From time to time it is necessary to reverse a sequence in time, i.e., assuming that x[n] =
[1,2,3,4], the folded sequence would be x[−n].The operation is essentially to flip the sequence
from left to right around index zero. For example, the sequence [1,2,3,4] that has corresponding
sample indices [3,4,5,6], when folded, results in the sequence [4,3,2,1] and corresponding
indices [-6,-5,-4,-3]. To illustrate the above ideas, we can, for example, let x[n] = [1,2,3,4] with
corresponding sample indices n = [3,4,5,6], and compute x[−n] using MathScript. We can write a
simple script to accomplish the folding operation:

SHIFTING

13

AUST/EEE

EVEN AND ODD DECOMPOSITION

Any real sequence can be decomposed into two components that display even and odd
symmetry about the midpoint of the sequence. A sequence that exhibits even symmetry has its
first and last samples equal, its second and penultimate samples equal, and so on. A sequence
that exhibits odd symmetry has its first sample equal to the negative of the last sample, its
second sample equal to the negative of its penultimate sample, etc. An even decomposition xe
of a sequence x can be obtained as

xe = 0.5*(x + fliplr(x))

and the corresponding odd decomposition xo is

xo = 0.5*(x - fliplr(x))

We can write a simple function that generates the even and odd components of an input
sequence x[n] as follows:

CONVOLUTION

An LTI system is completely characterized in the time domain by the impulse response shown
below:

Example:1

Solution :

14

AUST/EEE

The output should look like:

15

AUST/EEE

Figure 8: Convolution of the sequences x(n) and h(n)

CORRELATION

Solution:

Example: 2

16

AUST/EEE

Figure 9 :

17

AUST/EEE

Impulse response and Step response

Example 3:
Determine the first 41 samples of the impulse response and step response of the causal
LTI system defined by--

y[n] + 0.7y[n - 1] - 0.45y[n - 2] - 0.6y[n - 3]
= 0.8x [n] - 0.44x [n - 1] + 0.36x [n - 2] + 0.02x [n - 3]

Solution:
Illustration of Impulse Response Computation

N = input ('Desired impulse response length =');
p = input ('Type in the vector p =');
d = input ('Type in the vector d =');
x = [1 zeros(1,N-1)];
y = filter(p,d,x);
k = 0:1:N-1;
stem(k,y)
xlabel('Time index n'); ylabel('Amplitude')

N =41
p =[0.8 -0.44 0.36]
d =[1 0.7 -0.45 -0.6]

The causal LTI system can be simulated in MATLAB using the function filter function

y = filter (p, d, x)
processes the input data vector x using the system characterized by the coefficient
vectors p and d to generate the output vector y assuming zero initial conditions. The
length of y is the same as the length of x.

18

AUST/EEE
Figure 10: Impulse response of Example 3

Problem: 1

Problem: 2

Problem: 3

 .

Problem: 4
 and . Determine the crosscorrelation
and convolution among the sequences.

Problem: 5
Determine the first 41 samples of the step response of the causal LTI system defined by
Example 3. [Hints: Replace in the above program the statement x = (1 zeros
(l,N-1)) with the statement x = [ones(1, N)]

0 5 10 15 20 25 30 35 40
-1

-0.5

0

0.5

1

1.5

Time index n

A
m

pl
itu

de

19

AUST/EEE

SAMPLING AND ALIASING PROBLEM

INTRODUCTION

Aliasing literally means "by a different name" and is used to explain the effect of under-
sampling a continuous signal, which causes frequencies to show up as different
frequencies. This aliased signal is the signal at a different frequency. This is usually
seen as higher frequencies being aliased to lower frequencies. For a 1-dimensional
signal in time, the aliased frequency components sound lower in pitch. In 2-dimensional
space, such as images, this can be observed as parallel lines in pinstripe shirts aliasing
into large wavy lines. For 2-dimensional signals that vary in time, an example of aliasing
would be viewing propellers on a plane that seem to be turning slow when they are
actually moving at very high speeds.

Note:
The Nyquist sampling rate is twice the highest frequency of the signal. This is the
minimum rate needed to prevent aliasing.

 In Figure 1 a 500Hz cosine signal is shown in red, and an under-sampled version of the
signal in blue.

Figure 1: Aliased Signal

Let's start with a continuous-time cosine signal at 60 Hz.

f = 60; % Hz
tmin = -0.05;
tmax = 0.05;
t = linspace(tmin, tmax, 400);
x_c = cos(2*pi*f * t);
plot(t,x_c)
xlabel('t (seconds)')

Let's sample with a sampling frequency of 800 Hz.

LAB‐3

20

AUST/EEE

T = 1/800;
nmin = ceil(tmin / T);
nmax = floor(tmax / T);
n = nmin:nmax;
x1 = cos(2*pi*f * n*T);
hold on
plot(n*T, x1, 'o')
hold off

The sampling frequency of 800 Hz is well above 120 Hz, which is twice the frequency of
the cosine. And you can see that the samples are clearly capturing the oscillation of the
continuous-time cosine.

Let's try a lower sampling frequency of 400 Hz which is well above 120 Hz.

T = 1/400;
nmin = ceil(tmin / T);
nmax = floor(tmax / T);
n = nmin:nmax;
x1 = cos(2*pi*f * n*T);
plot(t, x_c)
hold on
plot(n*T, x1, 'o')
hold off

The samples above are still adequately capturing the shape of the cosine. Now let's drop
the sampling frequency down to exactly 120 Hz, twice the frequency of the 60 Hz cosine.

T = 1/120;
nmin = ceil(tmin / T);
nmax = floor(tmax / T);
n = nmin:nmax;
x1 = cos(2*pi*f * n*T);
plot(t, x_c)
hold on
plot(n*T, x1, 'o')
hold off

See the samples jump back and forth between 1 and -1. And they capture only the
extremes of each period of the cosine oscillation. This is the significance of "twice the
highest frequency of the signal" value for sampling frequency. If you'll allow a "hand-

21

AUST/EEE

wavy" explanation here, we would say that this sampling frequency of 120 Hz is just
enough to capture the cosine oscillation.

But aliasing is worse that "just" losing information. When we drop the sampling
frequency too low, the samples start to look increasingly like they came from a different,
lower-frequency signal.

Let's try 70 Hz.

T = 1/70;
nmin = ceil(tmin / T);
nmax = floor(tmax / T);
n = nmin:nmax;
x1 = cos(2*pi*f * n*T);
plot(t, x_c)
hold on
plot(n*T, x1, 'o')
hold off

The samples above look like they actually could have come from a 10 Hz cosine signal,
instead of a 60 Hz cosine signal. Take a look:

T = 1/70;
x_c = cos(2*pi*10 * t);
nmin = ceil(tmin / T);
nmax = floor(tmax / T);
n = nmin:nmax;
x1 = cos(2*pi*f * n*T);
plot(t, x_c)
hold on
plot(n*T, x1, 'o')
hold off

That's the heart of the "problem" of aliasing. Because the sampling frequency was too
low, a high-frequency cosine looked like a low-frequency cosine after we sampled it.

UP‐SAMPLER AND DOWN‐SAMPLER

An up‐sampler with an up‐sampling factor L, where L is a positive integer, develops an
output sequence xu[n] with a sampling rate that is L times larger than that of the input
sequence x[n]. The up‐sampling operation is implemented by inserting L‐1 equidistant

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t (seconds)

22

AUST/EEE

zero‐valued samples between two consecutive samples of the input sequence x[n]
according to the relation

௨ሾ݊ሿݔ ൌ ቊݔ ቂ
݊
ቃܮ ݊ ൌ 0, േܮ, േ2ܮ … …

݁ݏ݅ݓݎ݄݁ݐ݋ 0

Example 1: Study the up‐sampling of a sinusoidal input sequence.

clear all;
echo on;
N = input(‘Input length = ’) ;
L = input(‘Up-sampling factor = ’);
fo = input(‘Input Signal Frequency = ’);
% Generate the input sinusoidal sequence
n = 0:N-1;
x = sin(2*pi*fo*n);
% Generate up-sampled sequence
y = zeros(1, L*length(x));
y([1:L:length(y)])= x;
% Plot the input and the output sequences
subplot(211)
stem(n,x);
title(‘Input Sequence’);
xlabel(‘n’); ylabel(‘Amplitude’);
subplot(212)
stem(n,y(1:length(x)));
title([‘Output sequence up-sampled by’,num2str(L)]);
xlabel(‘n’); ylabel(‘Amplitude’);

A down‐sampler with a down‐sampling factor M, where M is a positive integer, develops
an output sequence y[n] with a sampling rate that is [1/M]th of that of the input
sequence x[n]. The down‐sampling operation is implemented by keeping every Mth
sample of the input sequence and removing M‐1 in‐between samples, to generate the
output sequence according to the relation

y[n] = x[nM]
As a result, all input samples with indices equal to an integer multiple of M are retained
at the output and all others are discarded.

Example 2: Study the down‐sampling of a sinusoidal input sequence.

clear all;
echo on;
N = input(‘Output length = ’) ;
M = input(‘Down-sampling factor = ’);

23

AUST/EEE

fo = input(‘Input Signal Frequency = ’);
% Generate the input sinusoidal sequence
n = 0:N-1;
m = 0:N*M-1;
x = sin(2*pi*fo*m);
% Generate down-sampled sequence
y = x([1:M:length(x)]);
% Plot the input and the output sequences
subplot(211)
stem(n,x(1:N));
title(‘Input Sequence’);
xlabel(‘n’); ylabel(‘Amplitude’);
subplot(212)
stem(n,y);
title([‘Output sequence down-sampled by’,num2str(M)]);
xlabel(‘n’); ylabel(‘Amplitude’);

INTERPOLATION PROCESS

clear all;
echo on;
N = input(‘length of input signal = ’) ;
L = input(‘Up-sampling factor = ’);
f1 = input(‘Input Signal Frequency of first sinusoid= ’); %
f1 = 0.043
f2 = input(‘Input Signal Frequency of second sinusoid= ’);%
f2 = 0.031
% Generate the input sinusoidal sequence
N = 0:N-1;
x = sin(2*pi*f1*n)+ sin(2*pi*f2*n);
% Generate interpolated output sequence
y = interp(x,L)
% Plot the input and the output sequences
subplot(211)
stem(n,x(1:N));
title(‘Input Sequence’);
xlabel(‘n’); ylabel(‘Amplitude’);
subplot(212)
m = 0:N*L-1
stem(m,y(1:N*L));
title(‘Output sequence’);
xlabel(‘n’); ylabel(‘Amplitude’);

Problem : 1

clear all; %clears all variables

24

Administrator
Typewriter
n

Administrator
Markup
 set by Administrator

AUST/EEE

t=0:.1:20;
F1=.1;
F2=.2;
x=sin(2*pi*F1*t)+sin(2*pi*F2*t);

%plotting
figure(1);
subplot(2,1,1);
plot(t,x);
title('Original signal')
xlabel('t');
ylabel('x(t)');

subplot(2,1,2);
x_samples=x(1:10:201); %gets 21 samples of x.
stem(x_samples,'filled');
title('Sampled signal')
xlabel('n');
ylabel('x_s(n)');
axis([0 20 -2 2]);

%creating dialog box with explanations
l1=[blanks(10),'Sample by sample reconstruction.'];
l2='Blue dots: Input samples.';
l3='Blue curve: reconstructed signal.';
l4='Red curve: contribution to output sample from current
sample.';
l5='Press any key to update with 1 iteration.';
l6='(You can keep this window open while watching the
reconstruction)';
information ={l1,'',l2,l3,l4,'',l5,'',l6};

%starting reconstruction process
figure(2);
messagebox=msgbox(information,'Information','help');
subplot(2,1,2);
plot(t,x,'black');
hold on;
plot([0 20],[0 0],'black');
hold off;
xlabel('t');
ylabel('x(t)');
title('Original signal');
grid;

x_recon=0;
subplot(2,1,1);

25

AUST/EEE

for k=0:length(x_samples)-1
 stem(0:length(x_samples)-1,x_samples,'filled');
 if k==length(x_samples)-1
 title('Reconstruction finished');
 else
 title('Sample by sample reconstruction');
 end
 grid on;
 l=k:-.1:-20+k;
 x_recon=x_recon+x_samples(k+1)*sinc(l);
 axis([0 20 -2 2]);
 hold;
 plot(t,x_samples(k+1)*sinc(l),'r')
 plot(t,x_recon);
 hold off;
 waitforbuttonpress;
end

Modify the code to generate aliased signal from the signal x. Plot both original and
aliased signal in the same scale.

26

AUST/EEE

z-transform operations with MATLAB
MATLAB Signal Processing Toolbox provides a fast and convenient means of
performing a variety of z-transform and inverse z-transform operations for DSP
systems design and analysis.

Inverse z-transform

The key MATLAB functions for performing inverse z-transform operations are the
deconv and residuez. The deconv function is used to perform the long division
required in the power series method. The residuez function is used to find the
partial fraction coefficients (residues) and poles of the z-transform.

Power series expansion with MATLAB
In the power series method, the key operation is polynomial division. The MATLAB
function deconv performs the deconvolution operation. In the power series method,
we exploit the fact that the deconvolution operation is equivalent to polynomial
division. Thus, given a z-transform X(z), of the form:

)(

)(
)(

1

10

1

10

za

zb

zazaa

zbzbb
zX

m

m

n

n 













the format of the command for deconvolution is

[q,r] = deconv(b,a)

where b and a are vectors representing the numerator and denominator polynomials,
b(z) and a(z), respectively, in increasing negative powers of z. The quotient of the
polynomial division is returned in the vector q and the remainder is contained in r. To
implement the power series method, the long division operation is applied
successively depending on the number of points required in the inverse operation.

Example: 1
Find the first five terms of the inverse z.-transform, x(n), using the power series
(polynomial division) method and MATLAB. Assume that the z-transform, X(z), has
the following form:

21

21

3561.01

21
)(










zz

zz
zX

Solution:

The coefficient for the numerator and denominator polynomials are formed, zeros
are appended to the coefficient vector b to ensure the correct dimension for MATLAB,
and then the command deconv is used to compute the inverse z-transform.

b=[1 2 1];

LAB-4

27

AUST/EEE

a=[1 -1 0.3561];

n=5;

b=[b zeros(1, n-1)];

[x, r]=deconv(b,a);

disp(x)

1.0000 3.0000 3.6439 2.5756 1.2780

Thus, x(0) = 1, x(1) = 3, x(2) = 3.6439, x(4) = 2.5756, and x(5) = 1.2780.

Example: 2
Find the first five values of the inverse z-transform of the following using the power
series (polynomial division) method and MATLAB:

)()()(

)()()(
)(

321

321

zDzDzD

zNzNzN
zX 

where
N1(z) = 1 - 1.22346z-1 + z-2

N2(z) = 1 - 0.437833z-1 + z-2

N3(z) = 1 + z-1

D1(z) = 1 - 1.4334509z-1 + 0.85811z-2

D2(z) = 1 - 1.293601z-1 + 0.556929z-2

D1(z) = 1 – 0.612159z-1

Solution:
The z-transform has three pairs of numerator and denominator polynomials. In the
MATLAB implementation (Example-1), the vectors containing the polynomial
coefficient are first formed. The MATLAB function sos2tf (second order sections-to-
transfer function)is then used to convert the three pairs of polynomials into a transfer
function with a pair of rational polynomials, b(z)/a(z):

)(

)(
)(

1

10

1

10

za

zb

zazaa

zbzbb
zX

m

m

n

n 













The deconv function is used to generate the inverse z-transform coefficients. The first
five values of the inverse z-transform are

x(0) = 1.0000, x(1) = 4.6915, x(2) = 11.4246, x(3) = 19,5863, x(4) = 27.0284

n = 5; % number of power series points

N1 = [1 -1.122346 1];

D1 = [1 -1.433509 0.858111];

N2 = [1 1.474597 1];

D2 = [1 -1.293601 0.556929]

N3 = [1 1 0];

D3 = [1 -0.612159 0];

B = [N1; N2; N3];

28

AUST/EEE

A = [D1; D2; D3];

[b,a] = sos2tf([B A]);

b = [b zeros(1,n-1)];

[x,r] = deconv(b,a); %perform long division

disp(x);

Partial fraction expansion with MATLAB
The MATLAB function residuez may be used to perform partial fraction expansion
of a z-transform, X(z), expressed as a ratio of two polynomials. The syntax for the
residuez command is

[r, p, k] = residuez(b, a)

where b and a are vectors representing the numerator and denominator polynomials,
b(z) and a(z), respectively, in increasing negative powers of z as follows:

)(

)(
)(

1

10

1

10

za

zb

zazaa

zbzbb
zH

m

m

n

n 













If the poles of H(z) are distinct, its partial fraction expansion has the form
)(1

2111

1

1

11)(

)(nm

nm

n

n zkzkk
zp

r

zp

r

za

zb 












 

The residuez function returns the residues of the rational polynomial b(z)/a(z) in the
vector r, the pole positions in p, and the constant terms in k.

Example: 3
Find the partial fraction expansion of the following z-transform.

21

21

3561.01

21
)(










zz

zz
zX

Solution:

[r, p, k] = residuez([1,2,1], [1, -1, 0.3561])

r =

 -0.9041 - 5.9928i

 -0.9041 + 5.9928i

p =

 0.5000 + 0.3257i

 0.5000 - 0.3257i

k =

 2.8082

Thus, the z-transform, expressed as a partial fraction expansion, becomes

1

2

2

1

1

1

11
 2.8082)(

 





zp

r

zp

r
zX

Where

29

AUST/EEE

r1 = -0.9041 - 5.9928i r2 = -0.9041 + 5.9928i

p1= 0.5000 + 0.3257i p2 = 0.5000 - 0.3257i

Example: 4
Find the partial fraction expansion of the function given in Example 2.

Solution:

The MATLAB function sos2tf is used to convert the numerator and denominator
polynomials into a single pair of polynomials, b(z)/a(z). The residuez function is
then used to find the partial fraction expansion.

N1 = [1 -1.122346 1];

N2 = [1 -0.437833 1];

N3 = [1 1 0];

D1 = [1 -1.433509 0.85811];

D2 = [1 -1.293601 0.556929];

D3 = [1 -0.612159 1];

sos = [N1 D1; N2 D2; N3 D3];

[b,a] = sos2tf(sos);

[r,p,k] = residuez(b,a)

Pole-zero diagram
The MATLAB function, zplane, allows the computation and display of the pole-zero dial
The syntax for the command is

zplane(b,a)

where b and a are the coefficient vectors of the numerator and denominator
polynomials, b(z)/a(z). In this format, the command first finds the locations of the poles
and zeros (i.e. the roots of b(z) and a(z), respectively) and then plots the z-plane
diagram.

Example: 5
A discrete-time system is characterized by the following transfer function:

21

21

878.05161.11

16180.11
)(










zz

zz
zH

Obtain and plot its pole-zero diagram. Use MATLAB in each case and assume a
sampling frequency of 500 Hz and a resolution of < 1 Hz for the frequency response.

Solution:
b = [1 -1.6180 1]; % form numerator and denominator polynomials

a = [1 -1.5161 0.878];

30

AUST/EEE

zplane(b,a) % compute and plot the pole-zero diagram

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Real Part

Im
a

g
in

a
ry

 P
a

rt

Figure 1: Pole-zero plot

If the locations of the poles and zeros are known, these can be used as inputs to the
zplane command. The syntax of the command in this case is zplane(z, p), where
z and p are the zeros and poles.

The locations of the poles and zeros can be found directly using the roots command.
This is useful for converting between pole and zero and the transfer function
representations. For example, an IIR filter is represented by

21

21

878.05161.11

16180.11
)(










zz

zz
zH

b = [1 -1.618 11];

a = [1 -1 .5161 0.878];

zk = roots(b);

pk = roots(a);

The numerator and denominator polynomials, b(z) and a(z), can be obtained using the
poly function:

B = poly(zk); A = poly(pk);

Frequency response estimation
The Signal Processing Toolbox contains many useful functions for computing and
displaying the frequency response of discrete-time systems. The most widely used is
the fregz function. Given the transfer function of a system in the following form:

)(

)(
)(

1

10

1

10

za

zb

zazaa

zbzbb
zX

m

m

n

n 













31

AUST/EEE

the fregz function uses an FFT-based approach to compute the frequency response.
The function has a variety of formats. A useful format is [h,f] = freqz(b, a,
npt, Fs), where the variables b and a are the vectors of the numerator and
denominator polynomials. Fs is the sampling frequency and npt the number of
frequency points between 0 and Fs/2. In the MATLAB Toolbox, the Nyquist frequency
(i.e. Fs/2) is the unit of normalized frequency, Using the fregz command without output
arguments plots the magnitude and phase responses automatically.

Example: 6
Repeat Example 5 using freqz.

Solution:
b = [1 -1.6180 1]; % form numerator and denominator coefficient

%vectors

a = [1 -1.5161 0.878];

freqz(b,a,256,500); % compute and plot the frequency response

0 50 100 150 200 250
-100

-50

0

50

100

Frequency (Hz)

P
h
a
s
e
 (

d
e
g
re

e
s
)

0 50 100 150 200 250
-30

-20

-10

0

10

Frequency (Hz)

M
a
g
n
it
u
d
e
 (

d
B

)

Figure 2: Frequency and phase response

Conversion between structures - cascade-to-parallel conversion

H1(z) H2(z) Hk(z)
x(n) y(n)

Figure 3: General structure for cascade realization

For cascade realization, the transfer function H(z) is factored as

32

AUST/EEE





k

i

ik zHzHzHzHzHzH
1

321)()()()()()(

where Hi(z) is either a second/first order section.

orderond
zaza

zbzbb
zH

ii

ii
i 










sec
1

)(
2

2

1

1

2

2

1

10

orderfirst
za

zbb
zH

i

i
i 










1

1

1

10

1
)(

where k is the integer part of (M+1)/2

H1(z)

Hk(z)

H2(z)

Σ
x(n) y(n)B0

Figure 4: General structure for parallel realization

For parallel realization, the transfer function H(z) is decomposed using partial fractions
to give





k

i

i zHBzH
1

0)()(

Where Hi(z) is either a second/first order section.

orderond
zbzb

zaa
zH

ii

ii

i 









sec
1

)(
2

2

1

1

1

10

orderfirst
zb

a
zH

i

i 



1

1

0

1
)(

where k is the integer part of (M+1)/2 and B0 = aN/bM

MATLAB provides a set of functions that allow the conversion between different formats
and structures that are used in DSP relatively easily. The ability to convert between the
parallel and cascade structures is particularly useful.

33

AUST/EEE

Example: 7
Repeat Example 2 for converting cascade-to-parallel structure.

Solution:
nstage=2;

N1 = [1 0.481199 1];

N2 = [1 1.474597 1];

D1 = [1 0.052921 0.831731];

D2 = [1 -0.304609 0.238865];

sos = [N1 D1; N2 D2];

[b, a] = sos2tf(sos);

[c, p, k] = residuez(b, a);

m = length(b);

b0 = b(m)/a(m);

j=1;

for i=1:nstage

 bk(j)=c(j)+c(j+1);

 bk(j+1)=-(c(j)*p(j+1)+c(j+1)*p(j));

 ak(j)=-(p(j)+p(j+1));

 ak(j+1)=p(j)*p(1+j);

 j=j+2;

end

b0

ak

bk

c

p

k

Problem: 1

Problem: 2

34

AUST/EEE

Discrete Time Fourier Series (DTFS)

Let us consider a sequence x(n) with period N, that is x(n)=x(n+N) for all n .The Fourier
series representation of x(n) consists of N harmonically related exponential functions

2j kn
Ne , k = 0,1,...,N-1

And expressed as

x(n)=





21

0

j knN
N

k
k

c e

This equation is often called the discrete-time Fourier series (DTFS), Fourier
coefficients { k

c },k=0,1,….,N-1 provided the description of x(n) is in frequency domain.
{ k
c } can b computed as

Note that
k N

c =
k

c

That is, { k
c } is a periodic sequence with fundamental period N. Thus the spectrum of

a signal x(n),which is periodic with period N, is a periodic sequence with period N.

Average power can be given as

N N

x k
k k

P | c | | x(n)|
N

 

 

  
1 1

2 2

0 0

1

The sequence
k

| c |2 for k=0,1,….,N-1 is the distribution of power as a function of
frequency and is called the power density spectrum of the periodic signal.
If the signal x(n) is real [*x (n) x(n)],then it can be shown that *

k kc c .
Again the following symmetry relationship holds

k N k
| | ||c c


 and

k N k
cc


 

N N
| | ||c c

2 2
 and

N
c 

2
0 if N is even

(N)/ (N)/
| c | | c |

 
1 2 1 2 and

(N)/ (N)/
c c

 
 1 2 1 2 if N is odd.

LAB-5

35

AUST/EEE

Example :1

Calculate Fourier Series Coefficients of a continuous rectangular pulse sequence of
1ms period and pulse width 0.1ms.The signal is sampled at 100kHz and sampled
discrete with n its index is shown below.

Solution:
The following MATLAB code calculates the Fourier series coefficients from the first
principle and from the Fourier series coefficients, again reconstructs the original
periodic sequence.

%CALCULATION OF FOURIER SERIES COEFFICIENTS

clear all;

echo on;

Fs = 100e3;

dt = 1/Fs;

%GENERATING THE RECTANGULAR PULSE TRAIN

T = 1e-3; %PERIOD OF THE PULSE TRAIN

D = 0.1; %DUTY CYCLE

PW = D*T; %PULSE WIDTH

f = 1/T; %ANALOG FREQUENCY

t = -T/2:dt:T/2; %TIME INTERVAL FOR A PERIOD

n = t/dt; %INDEX FOR DATA POINTS IN A PERIOD

L = PW/dt; %DATA POINTS IN THE THE HIGH TIME

x = zeros(1,length(t)); %INITIALIZING A SINGLE

RECTANGULAR PULSE

x(find(abs(n)<=L/2)) = 1.1; %GENERATION OF A SINGLE

RECTANGULAR PULSE

%END OF THE RENTANGULAR PULSE TRAIN

figure(1)

subplot(211)

plot(t,x)

xlabel('Time (Seconds)')

ylabel('x(t)')

title('Continuous signal')

subplot(212)

stem(n,x)

xlabel('n')

ylabel('x(n)')

title('Discrete signal')

N = length(x); % TOTAL NO OF DATA POINTS IN A PERIOD

Nc = N; %TOTAL NO COEFFICIENTS

if mod(Nc,2) == 0

 k = -(Nc/2):(Nc/2)-1;

else

36

Administrator
Typewriter
%

Administrator
Typewriter
%

AUST/EEE

 k = -(Nc-1)/2:(Nc-1)/2;

end

c = zeros(1,length(k)); %INITIALIZING FOURIER COEFFICIENTS

for i1=1:length(k)

 for i2=1:length(x)

 c(i1)=c(i1)+1/N*x(i2)*exp(-i*2*pi*k(i1)*n(i2)/N);

 end

end

figure(2)

subplot(211)

stem(k,abs(c));

xlabel('k')

ylabel('|c_k|')

title('Fourier series coefficients c_k')

subplot(212)

stem(k,angle(c)*130/pi)

xlabel('k')

ylabel('angle(c_k)')

%START OF RECONSTRUCTION OF SIGNAL

t_remax = T/2;

t_re = -t_remax:dt:t_remax;

n_re=t_re/dt;

x_re=zeros(1,length(n_re));

for i1=1:length(k)

 for i2=1:length(x_re)

x_re(i2)= x_re(i2)+c(i1)*exp(i*2*pi*k(i1)*n_re(i2)/N);

 end

end

%END OF RECONSTRUCTION OF SIGNAL

figure(3)

subplot(211)

stem(n_re, x_re)

xlabel('n')

ylabel('x_{reconstructed}')

title('Reconstructed signal')

subplot(212)

plot(t_re, x_re)

xlabel('t')

ylabel('x_{reconstructed}')

title('Reconstructed signal')

 k
c = 1

N

j knN
N

k
k

c e
 




21

0

x(x(n)=





21

0

j knN
N

k
k

c e

37

AUST/EEE

-5 -4 -3 -2 -1 0 1 2 3 4 5

x 10
-4

0

0.5

1

1.5

Time(seconds)

x
(t

)

Original continuous signal

-50 -40 -30 -20 -10 0 10 20 30 40 50
0

0.5

1

1.5

Time(seconds)

x
(n

)

Sampled discrete signal

-50 -40 -30 -20 -10 0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

k

|c
k

Fourier series coefficients c
k

-50 -40 -30 -20 -10 0 10 20 30 40 50
-200

-100

0

100

200

k
a
n
g
le

(c
k
)

-50 -40 -30 -20 -10 0 10 20 30 40 50
-0.5

0

0.5

1

1.5

n

x
re

c
o
n
s
tr

u
c
te

d

Reconstructed signal

-5 -4 -3 -2 -1 0 1 2 3 4 5

x 10
-4

-0.5

0

0.5

1

1.5

y

x
re

c
o
n
s
tr

u
c
te

d

Reconstructed signal

Figure: 3 Reconstructed signal.

Discrete Time Fourier Transform (DTFT)

Figure: 1 Rectangular pulse in continuous
 domain and its sampled version

 Figure 2: Magnitude and phase spectrum of the discrete time
 signal. The phase spectrum is not skew-symmetric
 with respect to k=0. It is an artifact of MATLAB and θ=
 +180 and -180 are in fact synonymous.

38

AUST/EEE

--------------------------------- (1)

----------------------- (2)

 (1)

 (1)

 (1)

----------------------------- (3)

----------------------------- (4)

(3),

39

AUST/EEE

Example 2:
Determine the discrete-time Fourier transform of the following finite-duration
sequence x(n)={1,2,3,4,5} at 501 equispaced frequencies between (0,π).

Solution:

Figure: 4 Amplitude and phase spectrum

40

AUST/EEE

DTFT equations in matrix form

We can arrange DTFT equations in Matrix form.
Let w be the vector containing M frequency points between [0, 2 ] (M X 1)
 x be the data sequence having N data points (N X 1)
 n be the time index vector (N X 1)

 TX Wx

Where W is an M×N matrix defined as

W=

j ()n() j ()n(N)

j (M)n() j (M)n(N)

e e

e e

    

      

 
 
 
 
 
 

0 0 0 1

1 0 1 1



  


Example 3:
Calculates the DTFT of a sequence x= [1,3,-9,5,10].

Solution:

x=[1,3,-9,5,10];

n1=-1; %Defining the index of first element of

x

n2=3; %Defining the index of last element of

x

n=n1:n2; %Index of x

M=500; %Total number of points in the

frequency range

w=(-M/2:M/2)*2*pi/M %Frequency grid

W=exp(-j*w'*n) %Matrix formation

X=W*x';

subplot(2,1,1)

plot(w/(2*pi),abs(X),'k')

xlabel('Digital frequency ,f')

ylabel('X|f|'),title('Magnitude Spectrum')

subplot(2,1,2)

plot(w/(2*pi),angle(X)*180/pi,'k')

xlabel('Digital frequency ,f')

ylabel('angle X(f)')

title('Phase Spectrum')

41

AUST/EEE

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
5

10

15

20

25

Digital frequency ,f

X
|f
|

Magnitude Spectrum

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-200

-100

0

100

200

Digital frequency ,f

a
n
g
le

 X
(f

)

Phase Spectrum

Figure 5: DTFT of sequence calculated by matrix method

Discrete Fourier Transform (DFT)

We know that aperiodic finite energy signals have continuous spectra (DTFT).

j n

n

X() x(n)e


 



  

In case of a finite length sequence x(n), n L  0 1,only L values of X(ω) over its
period, called the frequency samples, are sufficient to determine x(n) and hence X(ω).
This leads to the concept of discrete Fourier transform (DFT) which is obtained by
aperiodic sampling of X(ω)(DTFT).
We often compute a higher point (N point) DFT where N>L. This is because padding
the sequence x(n) with N-L zeros and computing an N point DFT results in a “better
display” of the Fourier transform X(ω).
To summarize, the formulas are (for causal sequence)

j kn j knN L
N N

n n

X(k) x(n)e x(n)e (DFT),k , ,...,N
   

 

    
2 21 1

0 0
0 1 1

j knN
N

k

(IDFT)
N

x(n) X(k)e ,n , ,...,N




  
21

0

1 0 1 1

42

AUST/EEE

DFT matrix equation is given by

 DFT equation

N

X W x
N


1 IDFT equation

Where j kn

N
eW   2

TX [X()X()...X(N)] 0 1 1

↓k (frequency index)

 →n (time index)

Note:

N
W matrix can be generated by dftmtx() function.

The functions dfs(xn,N) and idfs(Xk,N)can be used for DFS and IDFS:

N
X W x

Tx [x()x()...x(N)] 0 1 1

N
N N N

(N)
N N NN

(N) (N)N
N N N

W W W

W W WW

W W W






  

 
 
 
 
 
 
 
 
 
 

2

2 1

2 12 4

2 1 11

1 1 1 1
1
1

1







    



43

AUST/EEE

Example 4:

Solution:

Example 5:

Solution:

44

AUST/EEE

The functions dft(xn,N) and idft(Xk,N)can be used for DFT and IDFT:

Example 6:

45

AUST/EEE

Solution:

Figure 6: DTF plot of x(n)

Fast Fourier Transform (FFT)

46

AUST/EEE

Example 7:
A signal sinc(100t) is modulated with cos(500πt) carrier. Write a Matlab program to
plot entire modulation and demodulation using fft and ifft.

Solution:

function [M,m,df1]=fftseq(m,ts,df)

fs=1/ts;

n1=fs/df;

n2=length(m);

n=2^(max(nextpow2(n1),nextpow2(n2)));

M=fft(m,n);

m=[m,zeros(1,n-n2)];

df1=fs/n;

clear all;

echo on;

t0 = 0.2;

ts = 8.3333e-004;

fc = 250;

fs = 1/ts;

df = 0.3;

t = [-t0/2:ts:t0/2];

m = sinc(100*t); % MESSAGE SIGNAL

subplot(241)

plot(t,m)

xlabel('t')

ylabel('Amplitude')

title('Message Signal')

c = cos(2*pi*fc*t); % carrier

u = m.*c; % Modulation

[M,m,df1] = fftseq(m,ts,df);

M = M/fs;

 [C,m,df1] = fftseq(c,ts,df);

 C = C/fs;

[U,u1,df1] = fftseq(u,ts,df);

U = U/fs;

f = [0:df1:df1*(length(m)-1)]-fs/2;

subplot(242)

plot(f,abs(fftshift(M)))

xlabel('f')

ylabel('Amplitude')

title('Spectrum of the Message Signal')

subplot(243)

plot(f,abs(fftshift(C)))

xlabel('f')

47

AUST/EEE

ylabel('Amplitude')

title('Spectrum of the carrier Signal')

subplot(244)

plot(f,abs(fftshift(U)))

xlabel('f')

ylabel('Amplitude')

title('Spectrum of the Modulated Signal')

d = u.*c; % Demodulation

[D,m,df1] = fftseq(d,ts,df);

D = D/fs;

subplot(245)

plot(f,abs(fftshift(D)));

xlabel('f')

ylabel('Amplitude')

title('Spectrum of the demodulated Signal')

f_cutoff = 100;

n_cutoff = floor(f_cutoff/df1);

H = zeros(size(f));

H(1:n_cutoff) = 2*ones(1,n_cutoff);

H(length(f)-n_cutoff +1:length(f)) = 2*ones(1,n_cutoff); %

Define requied Lowpass Filter

subplot(246)

plot(f*df,abs(fftshift(H)))

xlabel('f')

ylabel('Amplitude')

title('Spectrum of the Lowpass Filter')

DEM = D.*H;

subplot(247)

plot(f,abs(fftshift(DEM)))

xlabel('f')

ylabel('Amplitude')

title('Spectrum of the Reconstructed Message Signal')

dem = real(ifft(DEM))*fs;

subplot(248)

plot(t,dem(1:length(t)))

xlabel('t')

ylabel('Amplitude')

title('Reconstructed Message Signal')

48

AUST/EEE
-0.1 0 0.1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t

A
m

p
lit

u
d
e

Message Signal

-1000 0 1000
0

0.002

0.004

0.006

0.008

0.01

0.012

f

A
m

p
lit

u
d
e

Spectrum of the Message Signal

-1000 0 1000
0

0.02

0.04

0.06

0.08

0.1

0.12

f

A
m

p
lit

u
d
e

Spectrum of the carrier Signal

-1000 0 1000
0

1

2

3

4

5

6
x 10

-3

f

A
m

p
lit

u
d
e

Spectrum of the Modulated Signal

-1000 0 1000
0

1

2

3

4

5

6
x 10

-3

f

A
m

p
lit

u
d
e

Spectrum of the demodulated Signal

-200 0 200
0

0.5

1

1.5

2

f

A
m

p
lit

u
d
e

Spectrum of the Lowpass Filter

-1000 0 1000
0

0.002

0.004

0.006

0.008

0.01

0.012

f

A
m

p
lit

u
d
e

Spectrum of the Reconstructed Message Signal

-0.1 0 0.1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t

A
m

p
lit

u
d
e

Reconstructed Message Signal

Figure 7: Implementation of fft to demonstrate Amplitude Modulation

Problem: 1
Consider the following FDM system.



 


othewise

tttc
tm

o

0

||)100(sin
)(1



 


othewise

tttc
tm o

0

||)100(sin
)(

2

2

Let carriers c1(t) = cos(2πfc1t), where fc1 = 250 Hz and c2(t) = cos(2πfc2t), where fc2 =
750 Hz are used to modulate and demodulate m1(t) and m2(t) respectively to transmit
a noiseless transmission system as shown in Figure 8. Write a Matlab code obtain
magnitude spectra at different stages of the system.

´

´



´

´

BPF

BPF

LPF

LPF

m1(t)

m2(t)

fc1

fc2

fc1

fc2

m1(t)

m2(t)

Figure 8: Simple FDM system.

49

AUST/EEE

FILTER SPECIFICATION

Figure 1 illustrates a typical design specification for an FIR lowpass filter. There
is generally a certain amount of ripple in both passbands and stopbands. In Fig.
1, the maximum deviation (considered as an acceptable tolerance) from the
average value in the passband is designated δP , while the deviation from zero in
the stopband is designated as δS. This manner of defining the requirements for
passband and stopband ripple is called an absolute specification; another
manner (more common) is to specify the levels of ripple in decibels relative to the
maximum magnitude of response, which is 1 + δP .

Figure 1: Design criteria for an FIR.

Figure 2 depicts another lowpass filter design specification in relative terms. The
values of R and A are in decibels, and represent the passband ripple amplitude
(or minimum passband response when the maximum filter/passband response is
0 db) and minimum stopband attenuation, respectively. The relationship between
δP and δS and R and A are

and

LAB‐6

50

AUST/EEE

To determine δP when R and A are given, use

and

Figure 2: A relative filter design specification, with the (horizontal) frequency axis
at the top, and (vertical) logarithmic amplitude (dB) axis at the left.

PROPERTIES OF LINEAR PHASE FIR FILTERS

Four types of linear phase FIR filters

51

AUST/EEE

Figure: 3 Comparison of the impulse of the four types of Linear Phase Filters.

52

AUST/EEE

Example : 1

53

AUST/EEE

Figure: 3 Example 1
Example 2:

54

AUST/EEE

Figure: 4 Example 2

55

AUST/EEE

Example 3:

56

AUST/EEE

Figure: 5 Example 3

Example 4:

57

AUST/EEE

Figure: 6 Example 4

58

AUST/EEE

WINDOW BASED FIR FILTER DESIGN USING MATLAB

LAB‐7

β

β

59

AUST/EEE

Figure 1: Typical window functions

The Signal processing toolbox of MATLAB includes the following functions for generating the
windows.

w = blackman(L) w = hamming(L) w = hann(L) w = chebwin(L,Rs)
w = kaiser(L,beta) w = bartlett(L) etc.

The above functions generate a vector w of window coefficients of odd length L.

Type “>> help window” in the command prompt to get more help of window function.

Example : 1
Illustrating FIR coefficient calculation using the Kaiser window Determine the coefficients and
plot the magnitude‐frequency response of a bandpass FIR filter, using the Kaiser window and
MATLAB, that meets the following specifications:

passband 150‐250 Hz
transition width 50 Hz
passband ripple 0.1 dB
stopband attenuation 60 dB
sampling frequency 1 kHz

Solution :
When β = 0, the Kaiser window corresponds to the rectangular window, and when, it is

5.44, the resulting window is very similar, though not identical, to the Hamming window. The
value of β is determined by the stopband attenuation requirements and may be estimated
from one of the following empirical relationships:

where A = ‐20 log10(δ) is the stopband attenuation, (δ = min(δp, δs)), since passband
and stopband ripples are nearly equal, δP is the desired passband ripple δS is the
desired stopband ripple. The number of filter coefficients, N, is given by

60

AUST/EEE

where Δf is the normalized transition width. The values of β and N are used to compute
the coefficients for the Kaiser window w(n).

clear all;
echo on;
FS=1000; % Sampling frequency
FN=FS/2; % Nyquist frequency
N=73; % Filter length
beta=5.65; % Kaiser window Ripple parameter
fc1=125/FN; % Normalized cut off frequencies
fc2=275/FN;
FC=[fc1 fc2]; % Band edge frequency vector
hn=fir1(N-1, FC, kaiser(N, beta)); % Obtain windowed filter coefficients
[H, f]=freqz(hn, 1, 512, FS);
mag=20*log10(abs(H)); % Compute frequency response
plot (f, mag), grid on
xlabel (`Frequency (Hz)')
ylabel ('Magnitude Response (dB)')

Figure 2: Example 1

DESIGN STAGES FOR DIGITAL IIR FILTERS
The design of IIR filters can be conveniently broken down into five main stages.

• Filter specification, at which stage the designer gives the function of the filter (for
example, lowpass) and the desired performance.

• Approximation or coefficient calculation, where we select one of a number of
methods and calculate the values of the coefficients, bk, and ak, in the transfer function,
H(z), such that the specifications given in stage 1 are satisfied.

• Realization, which is simply converting the transfer function into a suitable filter
structure. Typical structures for IIR filters are parallel and cascade of second and/or first‐

61

AUST/EEE

order filter sections.
• Analysis of errors that would arise from representing the filter coefficients and carrying

out the arithmetic operations involved in filtering with only a finite number of bits.
• Implementation, which involves building the hardware and/or writing the software

codes, and carrying out the actual filtering operation.

The bandedge frequencies are sometimes given in normalized form, that is a fraction of
the sampling frequency (f/FS), but we shall specify them in standard frequency units of
hertz or kilohertz as these are less confusing, especially to the inexperienced designer.
Passband and stopband deviations may be expressed as ordinary numbers or in decibels:
the passband ripple in decibels is

Ap = 10log10(1+ε
2) = ‐20log10(1‐δp)

and the stopband attenuation in decibel is

As = ‐20log10(δs)

COEFFICIENT CALCULATION METHODS FOR IIR FILTERS:

• Pole‐zero replacement

• Impulse invariant

• Matched z‐transform

62

AUST/EEE

• Biliear z‐transform

Example : 2

The halfwave rectified sine can be represented by the trigonometric Fourier series

we want to filter out just the first 2 terms. To simplify this expression, we let A = 3π and we
truncate it by eliminating all cosine terms except cos2t the term. Then,

The problem now reduces to design a lowpass digital filter, and use the filter command to
remove the higher order cosine terms.

Solution:
We will use a 6 pole digital lowpass Butterworth filter because we must have a sharp transition
between the 1rad/s and 2rad/s frequency range. Also, since the highest frequency component
is 2rad/s, to avoid aliasing, we must specify a sampling frequency of ωs = 4rad/s. Thus, the
sampling frequency must be fs = ωs/2π = 2/π and therefore, the sampling period will be Ts = 1/ fs
= π/2. We choose Ts = 0.5; this is sufficiently small. Also, we choose the cutoff frequency
of the filter to be ωc = 1.5rad/s in order to attenuate the cosine terms.

The MATLAB script below will perform the following steps:

• Will compute coefficients of the numerator and denominator of the transfer function
with normalized cutoff frequency.

• Will recompute the coefficients for the desired frequency.
• Use the bilinear function to map the analog transfer function to a digital transfer

function, and will plot the frequency response of the digital filter.
• Will recompute the digital filter transfer function to account for the warping effect.
• Will use the filter function to remove the cosine terms

% Step 1
%
clear all;

[z,p,k]=buttap(6);
[b,a]=zp2tf(z,p,k);
%
% Step 2
%
wc=1.5; % Chosen cutoff frequency
[b1,a1]=lp2lp(b,a,wc); % Convert to actual cutoff frequency
%
% Step 3
%
T=0.5; % Define sampling period

63

AUST/EEE

[Nz,Dz]= bilinear(b1,a1,1/T); % Map to digital filter using the bilinear
%transformation
w =0:2*pi/300:pi; % Define range for plot
Gz=freqz(Nz,Dz,w); % The digital filter transfer function
%
clf;
%
plot(w,abs(Gz)); axis([0 2 0 1]); grid; hold on;
% We must remember that when z is used as a function of
% normalized frequency, the range of frequencies of G(z) are
% from zero to pi and the normalized cutoff frequency on the
% plot is wc*T=1.5*0.5=0.75 r/s
%
xlabel('Radian Frequency w in rads/sec'),
ylabel('Magnitude of G(z)'),
title('Digital Filter Response in Normalized Frequency');
%
fprintf('Press any key to continue \n');
%
pause;
%
% Step 4
%
p=6; T=0.5; % Number of poles and Sampling period
wc=1.5; % Analog cutoff frequency in rad/sec
wd=wc*T/pi; % Normalized digital filter cutoff frequency
[Nzp,Dzp]=butter(p,wd);
fprintf('Summary: \n\n');
fprintf('WITHOUT PREWARPING: \n\n');
%
fprintf('The num N(z) coefficients in descending order of z are: \n\n');
fprintf('%8.4f \t',[Nz]);
fprintf('\n\n');
fprintf('The den D(z) coefficients in descending order of z are: \n\n');
fprintf('%8.4f \t',[Dz]);
fprintf('\n\n');
fprintf('WITH PREWARPING: \n\n');
%
fprintf('The num N(z) coefficients in descending order of z are: \n\n');
fprintf('%8.4f \t',[Nzp]);
fprintf('\n\n');...
fprintf('The den D(z) coefficients in descending order of z are: \n\n');
fprintf('%8.4f \t',[Dzp]);
fprintf('\n\n');

% Step 5
%
n=0:150;
T=0.5;
gt=3+1.5*sin(n*T)-cos(2*n*T);
yt=filter(Nzp,Dzp,gt);
%
% We will plot the unfiltered analog signal gta
%
t=0:0.1:12;
gta=3+1.5*sin(t)-cos(2*t);
subplot(211), plot(t,gta), axis([0,12, 0, 6]); hold on;

64

AUST/EEE

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Radian Frequency w in rads/sec

M
ag

ni
tu

de
 o

f
G

(z
)

Digital Filter Response in Normalized Frequency

0 2 4 6 8 10 12
0

2

4

6

Discrete Time nT

D
is

cr
et

e
F

un
ct

io
n

g(
n*

T
)

0 2 4 6 8 10 12
0

2

4

6

Discrete Time nT

F
ilt

er
ed

 O
ut

pu
t

y(
n*

T
)

xlabel('Continuous Time t'); ylabel('Function g(t)');
%
% We will plot the filtered analog signal y(t)
%
subplot(212), plot(n*T,yt), axis([0,12, 0, 6]); hold on;
xlabel('Continuous Time t'); ylabel('Filtered Output y(t)');
%
fprintf('Press any key to continue \n'); pause;
%
% We will plot the unfiltered discrete time signal g(n*T
%
subplot(211), stem(n*T,gt), axis([0,12, 0, 6]); hold on;
xlabel('Discrete Time nT'); ylabel('Discrete Function g(n*T)');
%
% We will plot the filtered discrete time signal y(n*T)
subplot(212), stem(n*T,yt), axis([0,12, 0, 6]); hold on;
xlabel('Discrete Time nT'); ylabel('Filtered Output y(n*T)')

Figure 4: Digital Filter Response in Normalized Frequency

Figure 5: Discrete time input and output waveforms

65

AUST/EEE

Problem 1:
Use the MATLAB commands cheb1ap and lp2hp to derive the transfer function of a 3 pole
Chebyshev Type I highpass analog filter with cutoff frequency fc = 5kHz. (472 (488 of 651))

Problem 2:
Use the MATLAB bilinear function to derive the lowpass digital filter transfer function G(z) from
a second‐order Butterworth analog filter with 3dB a cutoff frequency at 50Hz, and sampling
rate 500Hz. 486 (502 of 651)

Problem 3:
A lowpass, discrete‐time filter, with Butterworth characteristics, is required to meet the
following specifications:
cutoff frequency 300 Hz
filter order 5
sampling frequency 1000 Hz

(1) With the aid of MATLAB, obtain and plot
(a) the magnitude‐frequency and group delay responses of the filter using the impulse

invariant method;
(b) the magnitude‐frequency and group delay responses of the filter using the bilinear

 z‐transform method.
(2) Compare the two methods (bilinear z‐transform and impulse invariant invariant method)
 in terms of the magnitude response distortions due to the Nyquist effect.

Problem 4:
Design of a bandpass filter with specified bandedge frequencies and pass‐ and stopband ripples
A requirement exists for a bandpass digital filter, with a Butterworth magnitude‐frequency
response, that satisfies the following specifications:

lower passband edge frequency 200 Hz

upper passband edge frequency 300 Hz

lower stopband edge frequency 50 Hz

upper stopband edge frequency 450 Hz

passband ripple 3 dB

stopband attenuation 20 dB

sampling frequency 1 kHz
(1) Determine, using the BZT method and MATLAB:

(i) the order, N, of the filter;
(ii) the poles, zeros, gain, coefficients and transfer function of the discrete‐time

filter.
(2) Plot the magnitude‐frequency response and the pole‐zero diagram of the filter.

66

AUST/EEE

MOVING AVERAGE FILTER MATLAB PROGRAMS

The mean and weighted average filter operation can be achieved by “conv.m” MATLAB built-in
function.

Example : 1
r = conv(y, [1, 1, 1]/3)

gives the 3-point mean filter.
r = conv(y, [0.25, 0.5, 0.25])

gives 3-point weighted average filter.

Solution:
clear all;

echo on;

x = linspace(1, 10, 100);

f = 5 + x.*sin(x); %signal

y = f + randn(1, 100).*2; %Gaussian noise N(0, 22) added

subplot(321)

plot(x, f);

title('Original signal')

subplot(322)

plot(x, y);

title('Noisy signal')

rf1 = conv(y, [0.25, 0.5, 0.25]); %3-point weighted average

size(rf1) %note length of rf is NOT 100

rf1 = rf1(2:101); %middle 100 points give the solution

subplot(323)

plot(x, rf1);

title('Filtered with 3-point weighted average')

rf2 = conv(y, ones(1, 3)/3);

subplot(324)

plot(x, rf2(2:101));

title('Filtered with 3-point moving average')

rf3 = conv(y, ones(1, 7)/7);

subplot(3,2,[5:6])

plot(x, rf3(4:103)); %note the length of rf3

title('Filtered with 7-point moving average')

LAB-8

67

http://www.e-projects.co.cc/2009/08/moving-average-filter-matlab-programs.html

AUST/EEE

1 2 3 4 5 6 7 8 9 10
-5

0

5

10

15
Original signal

1 2 3 4 5 6 7 8 9 10
-5

0

5

10

15

20
Noisy signal

1 2 3 4 5 6 7 8 9 10
-5

0

5

10

15
Filtered with 3-point weighted average

1 2 3 4 5 6 7 8 9 10
-5

0

5

10

15
Filtered with 3-point moving average

1 2 3 4 5 6 7 8 9 10
-5

0

5

10

15
Filtered with 7-point moving average

Figure 1: Example 1

Example: 2

Moving average using filter.m MATLAB built-in function

clear all;

t=0:.01:1;

f=5;

y=sin(2*pi*f*t);

%Generation of random signal

g=0.5*randn(size(t));

z=g+y;

N=10; %order required

b=1/N*(ones(1,N));

x=filter(b,1,z); %filters noice

subplot(3,1,1);

plot(t,y);

ylabel('pure signal');

subplot(3,1,2);

plot(t,z);

ylabel('noise buried');

subplot(3,1,3);

plot(t,x);

ylabel('filtered signal');

xlabel('Time in seconds');

68

AUST/EEE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1

p
u
re

 s
ig

n
a
l

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

0

2

n
o
is

e
 b

u
ri
e
d

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1

fi
lt
e
re

d
 s

ig
n
a
l

Time in seconds

Figure 2: Example 2

Median filter

Example 3 :
3-point and 5-point median filters are given by

respectively.
We may use “sm1d.m” to compute median filter values.

function y = sm1d(x, window, choice)

%SM1D Smooth a 1d signal. You can have the choice of mean

% or median smoothing, and also you can control the smoothing %

window size.USAGE sm1d(x, h, choice), where

% x = the signal data

% window = window width, eg 3 means span 3 smoothing.

% choice = 'mean' if mean smoothing

% = 'median' if median smoothing

n = length(x);

h = floor((window - 1)/2);

y = x;

69

AUST/EEE

1 2 3 4 5 6 7 8 9 10
-10

0

10

20
Original signal

1 2 3 4 5 6 7 8 9 10
-10

0

10

20
Noisy signal

1 2 3 4 5 6 7 8 9 10
-10

0

10

20
filtered signal

if strcmp(choice, 'mean')

 for i = 1:n

 bg = max(1, i-h);

 ed = min(n, i+h);

 y(i) = mean(x(bg:ed));

 end

elseif strcmp(choice, 'median')

 for i = 1:n

 bg = max(1, i-h);

 ed = min(n, i+h);

 y(i) = median(x(bg:ed));

 end

else

 error('Wrong smoothing method');

end

%%%

clear all;

echo on;

x = linspace(1, 10, 100);

f = 5 + x.*sin(x); %signal

y = f + randn(1, 100).*2; %Gaussian noise N(0, 22) added

subplot(311)

plot(x, f);

title('Original signal')

subplot(312)

plot(x, y);

title('Noisy signal')

mf = sm1d(y, 5, 'median'); %5-point median

subplot(313)

plot(x, mf);

title('filtered signal');

Figure 3: Example 3

70

AUST/EEE

Comb Filters

The basic comb filter is given by

which has L equally-spaced zeros or poles at the radius r. In the diagram below, r is very close to

the unit circle.

function [b,a] = COMB(r,L)
% COMB
% [b,a] = COMB(r,L)
% generates L zeros equally spaced around a circle of radius r
b = [1 zeros(1,L-1) -r^L];
a = [1 zeros(1,L-1)];

%%

clear all;

L = 16;

r = 0.995

[b,a] = comb(r,L);

[z,p,k] = tf2zp(1,b); % IIR comb

subplot(311)

zplane(z,p)

 % FIR Comb

[h,w] = freqz(1,b);

subplot(312)

plot(w/pi,abs(h));

xlabel ('Normalized frequency (Nyquist==1)')

ylabel ('Magnitude Response')

title('IIR Comb')

% IIR comb

[h,w] = freqz(b,1);

subplot(313)

plot(w/pi,abs(h));

ylabel 'Magnitude Response'

xlabel 'Normalized frequency (Nyquist==1)'

title('FIR Comb')

71

AUST/EEE

-5 -4 -3 -2 -1 0 1 2 3 4 5

-1

0

1

Real Part

Im
a
g
in

a
ry

 P
a
rt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

Normalized frequency (Nyquist==1)

M
a
g
n
it
u
d
e
 R

e
s
p
o
n
s
e

IIR Comb

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

M
a
g
n
it
u
d
e
 R

e
s
p
o
n
s
e

Normalized frequency (Nyquist==1)

FIR Comb

Figure 4: Comb Filter

Equivalence of Moving Average and CIC filter

Understanding on the cascaded integrator comb (CIC) filter

For understanding the cascaded integrator comb (CIC) filter, firstly let us understand the
moving average filter, which is accumulation latest samples of an input sequence x(n).

Figure 5: Moving average filter

72

AUST/EEE

The frequency response of the moving average filter is:

.

clear all;

N = 10;

xn = sin(2*pi*[0:.1:10]);

hn = ones(1,N);

y1n = conv(xn,hn);

% transfer function of Moving Average filter

hF = fft(hn,1024);

plot([-512:511]/1024, abs(fftshift(hF)));

xlabel('Normalized frequency')

ylabel('Amplitude')

title('Frequency response of Moving average filter')

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6

7

8

9

10

Normalized frequency

A
m

p
lit

u
d
e

Frequency response of Moving average filter

Figure 6: Frequency response of moving average filter

73

