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Experiment 1: Introduction to MATLAB  

(Part 1) 
 

 

# MATLAB works with three types of windows on your computer screen. These are the 

Command window, the Figure window and the Editor window. The Figure window only 

pops up whenever you plot something. The Editor window is used for writing and editing 

MATLAB programs (called M-files) and can be invoked in Windows from the pull-down 

menu after selecting File | New | M-file. 

 

# Create a folder of your group name in C drive. 

# Open MATLAB 6.5.  In "current directory'' select your folder. 

# From the "file" menu start a new m-file. Always write your program in m-file & save it. 

The file/function/variable name must start with a letter and cannot contain space. The 

name can be a mix of letters, digits, and underscores. (e.g., vector_A, but not vector-A 

(since "-" is a reserved char). must not be longer than 31 characters.  

# You can also write any command or program in "command window". 

# Function "clear all" removes all variables, globals, functions and MEX links. Write 

clear all at the beginning of your m-file. 

# Write "clc" in command window to clear the command window, "clg" to clear graphics 

window. 

# MATLAB is case sensitive. e.g., NAME, Name, name are 3 distinct variables. 

# Write "help function_name" in command window after the ">>" sign to see the 

description of the function. For example, type "help sin" to know about sin functions in 

MATLAB. You can also use help in the menubar. 

Explore MATLAB‟s lookfor and help capability by trying the following: 

 

>> lookfor keywords 

>> help 

>> help plot 

>> help ops 

>> help arith 

 
 

Special Characters: 
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There are a number of special reserved characters used in MATLAB for various purposes. 

Some of these are used as arithmetic operators, namely, +, -, *, / and \. While others 

perform a multitude of purposes:  

 % -- anything after % (and until end of line) is treated as 

comments, e.g., 

 
>> x = 1:2:9; % x = [1 3 5 7 9];  

  

  
 ; -- delimits statements; suppresses screen output, e.g.,  

  
>> x = 1:2:9; y = 2:10; % two statements on the same line  

 
 ... -- statement continuation, e.g.,  

  
>> x = [ 1 3 5 ... 

7 9]; % x = [1 3 5 7 9] splitted into 2 lines  

 
 : -- range delimiter, e.g.,  

  
>> x = [1:2:9]; % x=[1,3,5,7,9]  

 ' -- matrix transposition, e.g.,  

  
>> x = [1:2:9]'; % x changed from row vector to column vector 

If the vector/matrix is complex, “ ’ ” results in complex conjugation and 

matrix transposition.  

 
 , -- command delimiter, e.g.,  

  
>> x = [1:2:9], y = [1:9] % two statements on the same line  

 
 . -- precede an arithmetic operator to perform an elemental 

operation, instead of matrix operation, e.g., 

 
>> x = 3:3:9 

 

x = 

 

     3     6     9 

 

>> y = 3*ones(3,1)' 

 

y = 

 

     3     3     3 
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>> z =x./y 

 

z = 

 

     1     2     3  

 

 * -- "wild card", e.g.,  

  
>> clear A* % clears all variables that start with A.  

Note that many of these characters have multiple functionalities (function overloading) 

depending on the context, e.g., "*" is used for scalar multiply, matrix multiply and "wild 

card" as seen above.  

 

 

Arithmetic Operations & Built in functions: 

 

#Example1 

 Find 2exp(5 /3 )y pi . 

 

Solution: In m-file write the following command 

 

clear all; 

a=5^2; 

b=3*pi; 

y=exp(a/b); 

disp(y) 

 

#Save the file and “run” the program from “Debug” menu. Type “y” in command 

window and press “enter”. 

# Remove “;” from all the lines and run the program. 

# Write each line in command window and press “enter” after each line. 

# Variable names are assigned to expressions by using equal sign. For example, a=5^2; 

here “a” is the variable that store the value of  5^2 or 25. 

# See the list of built in functions from “help” menu. Some built in functions are 

 abs()   cos()   sin()  exp()   log()   real()   sqrt() floor()  ceil()   

 

Matrices: 

 

# Write A= [1 2 3; 4 5 6; 7 6 3] in command window and press “enter”. It is a 33 matrix. 

# Write A(1,3) in command window to view the 3
rd

 element in 1
st
 row. The first 

parameter within bracket denotes row and the second parameter denotes column. 

# Z=zeros(2,3)  creates a 23 matrix of zeros. Similarly ones(), eye() create special types 

of matrices.  

# Write A=0:0.3:3 in command window. 0 is the starting value, 3 is the end value and 0.3 

is the step value.  

# Write “help size”, “help prod” and “help length” in command window.  
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Matrix Operations: 

# All arithmetic operations can be performed on matrices. 

# Operations can be performed on each element or on whole matrix. For example, 

 

>> x = 3:3:9 

 

>> y = 3*ones(3,1)' 

 

>> z =x./y 

 

# Some operations are performed on square matrices only. 

  

#   +    -    *    /    ^  (algebraic/matrix definitions) 

   .+   .-   .*   ./   .^  (element by element operation) 

Additionally,  

" ' " performs matrix transposition; when applied to a complex matrix, it includes 

elemental conjugations followed by a matrix transposition 

\ and .\ perform matrix and elemental left division  

 

 

 

Report: 

 

#Exercise 1.   

Find the value of  3ln(sinh(exp(54 / 6* )))y pi  

 

# Exercise 2: 

 Find the size, and length of following matrices 

A=[1 2 3; 4 5 6;7 6 54; 65 23 45] 

B=7:1:13.5 

# Write A(1:2,2:3) in command window. Write A([1 2],[2 3]). These are different ways 

to select a submatrix of a matrix. 

#A(1,1)=sin(5); assign a new value to an element of A. 

 

#Exercise 3. 

 A=[2 3; 4 5]; B=[3 4; 6 7]; 

  Find A+B, A*B, A.*B,A/B,A\B, A.^2,A./B 

 

# Exercise 4 . 

 Define the matrices  
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A=[17 2 3 4; 5 6 7 8; 9 10 11 12; 13 14 15 16] 

B=[ 2 3 4 5 ; 6 7 8 9 ; 10 11 12 13 ; 14 15 16 17 ] 

C=[ 1 2 3 ; 4 5 6 ; 7 8 9 ]  

y=[ 4 3 2 1 ]'  

Note the transpose ' on the y-vector which makes y a column vector. 

a) Compute AB and BA. Is matrix multiplication commutative? 

b) Compute AC. Why do you get an error message? 

c) Solve the following system of equations:  

17x1+2x2+3x3+4x4 = 4  

5x1+6x2+7x3+8x4 = 3  

9x1+10x2+11x3+12x4 = 2  

13x1+14x2+15x3+16x4 = 1  
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Experiment 2: Applications of MATLAB  
 

 

Graphics: 

 

# MATLAB can produce 2 and 3 dimensional plots. 

 

MATLAB is an interactive environment in which you can program as well as visualize 

your computations. It includes a set of high-level graphical functions for:  

 Line  plots(plot, plot3, polar) 

 Bar graphs(bar, barh, bar3, bar3h, hist, rose, pie, pie3) 

 Surface plots(surf, surfc) 

 Mesh plots(mesh, meshc, meshgrid) 

 Contour plots(contour, contourc, contourf) 

 Animation(moviein, movie) 

 

#Example 2.  

 

  x=0:0.1:pi; 

      y=cos(x); 

   plot(y); 

     plot(x,cos(x),‟r‟); 

         plot(x,y,x,y.^2); 

 

#Example 3. 

 

   x=0:0.1:pi; 

     y=cos(x); 

      plot(y); 

        hold on 

          plot(x,cos(x),‟r‟); 

 

#Example 4. 

 

   x=linspace(0,7); 

    y=exp(x); 

     subplot(2,1,1), plot(x,y); 

       subplot(2,1,2), semilogy(x,y); 

   

# Example 5.   
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 x = magic(3); 

    bar(x); 

       grid 

 

 

Loops & Conditionals: 

 

#MATLAB has the following flow control constructs: 

• if statements 

• switch statements 

• for loops 

• while loops 

• break statements 

 

The if, for, switch and while statements need to terminate with an end statement. 

 Example: 

 

#Example 6. IF: 

 

     x=-3; 

if x>0 

  a=10; 

    elseif x<0 

       a=11; 

    elseif x= = 0 

     a=12; 

      else 

        a=14; 

end 

 

What is the value of  „a‟ after execution of the above code? 

 

 

#Example 7. WHILE: 

 

    x=-10; 

while x<0 

      x=x+1; 

end 

 

What is the value of x after execution of the above loop? 

 

 

 

#Example 8. FOR loop: 



AUST/EEE

 9 

 

    x=0; 

for i=1:10 

      x=x+1; 

end 

 

What is the value of x after execution of the above loop? 

 

Defining matrices via the vector technique  

Using the for loop in MATLAB is relatively expensive. It is much more efficient to 

perform the same task using the vector method. For example, the following task 

   for j=1:n 

      for i=1:m 

        A(i,j) = B(i,j) + C(i,j); 

      end 

   end 

can be more compactly and efficiently represented (and computed) by the vector method 

as follows: 

   A(1:m,1:n) = B(1:m,1:n) + C(1:m,1:n); 

If the matrices are all of the same size (as is the case here), then the above can be more 

succinctly written as 

   A = B + C; 

For sufficiently large matrix operations, this latter method is vastly superior in 

performance. 

 

#Example 9. BREAK: 

 

The break statement lets you exit early from a for or a while loop: 

 

      x=-10; 

while x<0 

        x=x+2; 

     if x = = -2 

        break; 

     end 

end 
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What is the value of x after execution of the above loop? 

Relational Operators 

 

Symbol     Meaning 

<=           Lessthanequal 

<             Less than 

>=          Greater than equal 

>            Greater than 

==          Equal 

˜ =         Not equal 

 

 

 

Logical Operators 

Symbol     Meaning 

&               AND 

|                OR 

˜               NOT 

 

Defining functions: 

 

# In MATLAB there is scope for user-defined functions. 

Suggestion: Since MATLAB distinguishes one function from the next by their file names, 

name files the same as function names to avoid confusion. Use only lowercase letter to be 

consistent with MATLAB's convention. 

# To define a function, start a new M-file  

The first line of M-file should be 

  function  variable_name=function_name(parameters); 

 

variable_name is the name of variable whose value will be returned. 

function_name  is user defined according to the rules stated previously. 

 

 

 

#Example 10: 

 

function y=cal_pow(x); 

 

y=1+x^2; 

 

end 

 

# Save this function as cal_pow. 

# Start another new M-file .This will be our main file. 

# Write the following commands and run the file: 
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 clear all; 

     x=0:1:3; 

        t=length(x); 

 

 for i=1:t 

      val(i)=cal_pow(x(i)); 

end 

 

plot(x,val); 

 

 

 

Report: 

 

#Exercise1.  

Plot the following functions in the same window y1=sin x, y2=sin 2x, y3=sin 3x, y4=sin 

4x where x varies from 0 to pi. 

 

 

# Exercise 2.  

Write a program to compute the variance of an array x . The variance  is defined to 

be: 
2

1

1
( )

N

i

i

x x
N




   

where x  is the average of the array x .  

 

For x , use all the integers from 1 to 1000. 

 

 

# Exercise 3 .  

Solve the following circuit to find i1, i2, and i3. 
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R4

2ohm

i3

R5

1ohm

i2

V1
7Vdc

R3

3ohm

R1

1ohm

V2
6Vdc

i1

R2

2ohm

 
 

Ans: i1= 3 amp, i2= 2 amp, i3= 3 amp. 
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Experiment 3: Curve Fitting  

 
Introduction: 

 

Data is often given for discrete values along a continuum. However we may require 

estimates at points between the discrete values. Then we have to fit curves to such data to 

obtain intermediate estimates. In addition, we may require a simplified version of a 

complicated function. One way to do this is to compute values of the function at a 

number of discrete values along the range of interest. Then a simpler function may be 

derived to fit these values. Both of these applications are known as curve fitting. 

 

There are two general approaches of curve fitting that are distinguished from each other 

on the basis of the amount of error associated with the data. First, where the data exhibits 

a significant degree of error, the strategy is to derive a single curve that represents the 

general trend of the data. Because any individual data may be incorrect, we make no 

effort to intersect every point. Rather, the curve is designed to follow the pattern of the 

points taken as a group. One approach of this nature is called least squares regression.  

 

Second, where the data is known to be very precise, the basic approach is to fit a curve 

that passes directly through each of the points. The estimation of values between well 

known discrete points from the fitted exact curve is called interpolation. 
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Figure 1: (a) Least squares linear regression (b) linear interpolation (c) curvilinear 

interpolation 

 

 

 

Least squares Regression: 

 

Where substantial error is associated with data, polynomial interpolation is inappropriate 

and may yield unsatisfactory results when used to predict intermediate values. A more 

appropriate strategy for such cases is to derive an approximating function that fits the 

shape or general trend of the data without necessarily matching the individual points. 

Now some criterion mush be devised to establish a basis for the fit. One way to do this is 

to derive a curve that minimizes the discrepancy between the data points and the curve.  

A technique for accomplishing this objective is called least squares regression, where the 

goal is to minimize the sum of the square errors between the data points and the curve. 

Now depending on whether we want to fit a straight line or other higher order 

polynomial, regression may be linear or polynomial. They are described below. 

 

Linear regression: 

 

The simplest example of least squares regression is fitting a straight line to a set of paired 

observations: (x1, y1), (x2, y2), , , ,(xn, yn). The mathematical expression for straight line 

is  

ym=a0+a1x 
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Where a0 and a1 are coefficients representing the intercept and slope and ym is the model 

value. If y0 is the observed value and e is error or residual between the model and 

observation then 

 

e=y0-ym=y0 - a0 - a1x 

 

Now we need some criteria such that the error e is minimum and also we can arrive at a unique 

solution (for this case a unique straight line). One such strategy is to minimize the sum of the 

square errors. So sum of square errors 

 

2 2 2

, ,mod 0 1

1 1 1

( ) ( )
n n n

r i i observed i el i i

i i i

S e y y y a a x
  

        ……………………………..1 

 

To determine the values of a0 and a1, equation (1) is differentiated with respect to each 

coefficient. 

  

0 1

0

0 1

1

2 ( )

2 ( )

r
i i

r
i i i

S
y a a x

a

S
y a a x x

a


   




   






 

 

Setting these derivatives equal to zero will result in a minimum Sr. If this is done, the 

equations can be expressed as  

 

0 1

2

0 1

0

0

i i

i i i i

y a a x

y x a x a x

  

  

  

    

Now realizing that 0 0a na , we can express the above equations as a set of two 

simultaneous linear equations with two unknowns a0 and a1. 

 

0 1

2

0 1

( )

( ) ( )

i i

i i i i

na x a y

x a x a x y

 

 

 

  
 

from where 

 

    
1 2 2

0 1

( )

i i i i

i i

n x y x y
a

n x x

a y a x






 

  
   

 

Where y  and x  are the means of y and x respectively 
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Example 1: 

Fit a straight line to the x and y values of table 1 

 

 

Table 1: 

x y 

1 0.5 

2 2.5 

3 2.0 

4 4.0 

5 3.5 

6 6.0 

7 5.5 

 

Ans: a0=0.071142857, a1=0.83928 

 

%program for fitting a straight line 

%entering no. of observed points  

n=input('How many points '); 

 

%taking input 

for i=1:n 

    x(i)=input(''); 

    y(i)=input(''); 

end 

 

%calculating coefficients 

sumx=0; 

sumy=0; 

sumxy=0; 

sumxsq=0; 

for i=1:n 

sumx=sumx+x(i); 

sumy=sumy+y(i); 

sumxy=sumxy+x(i)*y(i); 

sumxsq=sumxsq+x(i)^2; 

end 

 

format long ; 

 

%calculating a1 and a0 

a1=(n*sumxy-sumx*sumy)/(n*sumxsq-sumx^2) 

a0=sumy/n-a1*sumx/n 

 

%plotting observed data 
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plot(x,y,'o') 

hold on; 

 

%plotting fitted data 

ym=a0+a1.*x; 

plot(x,ym); 

 

 

Polynomial Regression: 

 

In some cases, we have some engineering data that cannot be properly represented by a straight 

line. We can fit a polynomial to these data using polynomial regression. 

 

Figure 2: (a) Data that is ill-suited for linear least squares regression (b) indication that a 

parabola is preferable 

The least squares procedure can be readily extended to fit the data to a higher order polynomial. 

For example, we want to fit a second order polynomial 

 

ym=a0 + a1x+ a2x
2
  

 

For this case the sum of the squares of residuals is 

 

2 2

0 1 2

1

( )
n

r i i i

i

S y a a x a x


    ……………………………2 

 

Taking derivative of equation (2) with respect to unknown coefficients a0, a1 and a2 
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2

0 1 2

0

2

0 1 2

1

2 2

0 1 2

2

2 ( )

2 ( )

2 ( )

r
i i i

r
i i i i

r
i i i i

S
y a a x a x

a

S
x y a a x a x

a

S
x y a a x a x

a


    




    




    









 

 

These equations can be set equal to zero and rearranged to develop the following set of 

normal equations: 

 
2

0 1 2

2 3

0 1 2

2 3 4 2

0 1 2

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

ii i

i i i i i

i i i i i

na x a x a y

x a x a x a x y

x a x a x a x y

  

  

  

  

   

   
 

Now a0, a1 and a2 can be calculated using matrix inversion. 

 

 

Linearization of Nonlinear Relationships: 

 

Linear regression is a powerful technique for fitting a best line to data. However it is 

dependent on the fact that the relationship between the dependent and independent 

variables should be linear. This is always not the case. In those cases, we use polynomial 

regression. In some cases, transformation can be used to express the data in a form that is 

compatible with linear regression. 

 

One example is the exponential model  

 
1

1

b x
y a e …………………………..3 

 

Where a1 and b1 are constants. 

 

Another example of a nonlinear model is the simple power equation 

 
2

2

b
y a x …………………………..4 

 

Where a2 and b2 are constants. 
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1 1ln lny a b x   

 

Thus a plot of lny vs x will yield a straight line with a slope of b1 and an intercept of lna1 

 

Equation (4) can be linearized by taking its base10 logarithm to give 

 

2 2log log logy b x a   

 

Thus a plot of logy vs logx will yield a straight line with a slope of b2 and an intercept of 

loga2 

 

 

 

 

Report: 

 

# Exercise 1: 

Fit a second order polynomial to the data given in table 2 

 

Table 2 

x y 

0 2.1 

1 7.7 

2 13.6 

3 27.2 

4 40.9 

5 61.1 

 

Ans: a0=2.47857, a1=2.35929, a2=1.86071 

 

Nonlinear regression techniques are available to fit these equations to experimental data directly. 

However, a simpler alternative is to use mathematical manipulations to transform the equations 

into linear forms. Then simple linear regression can be used to fit the equations to data. 

 

For example equation (3) can be linearized by taking its normal logarithm to yield 
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Hints: find logx and logy for all points. Using these converted points, using linear 

regression find slope b2 and intercept loga2. Then find a2 and b2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

# Exercise 2: 

 Fit the equation 2

2

b
y a x to the data given in Table 3 

 

Table 3 

x y 

1 0.5 

2 1.7 

3 3.4 

4 5.7 

5 8.4 

 

Ans: a2=0.5, b2=1.75 
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 Experiment 04: Solution of Simultaneous  

  Linear Algebraic Equations 

 
Objective 

Systems of linear algebraic equations occur often in diverse fields of science and 

engineering and is an important area of study. In this experiment we will be concerned 

with the different techniques of finding solution of a set of n linear algebraic equations in 

n unknowns. 

 

Concept of linear equations and their solution 

A set of linear algebraic equations looks like this: 

 

11 1 12 2 1 1... N Na x a x a x b    

21 1 22 2 2 2... N Na x a x a x b           (1) 

… … … … 

1 1 2 2 ...M M MN N Ma x a x a x b    

 

Here the N unknowns xj , j = 1, 2, . . .,N are related by M equations. The coefficients aij 

with i = 1, 2, . . .,M and j = 1, 2, . . .,N are known numbers, as are the right-hand side 

quantities bi, i = 1, 2, . . .,M. 

 

Existence of solution 

If N = M then there are as many equations as unknowns, and there is a good chance of 

solving for a unique solution set of xj‟s. Analytically, there can fail to be a unique 

solution if one or more of the M equations is a linear combination of the others (This 

condition is called row degeneracy), or if all equations contain certain variables only in 

exactly the same linear combination(This is called column degeneracy). (For square 

matrices, a row degeneracy implies a column degeneracy, and vice versa.) A set of 

equations that is degenerate is called singular. 

Numerically, at least two additional things can go wrong: 

• While not exact linear combinations of each other, some of the equations may be so 

close to linearly dependent that round off errors in the machine renders them linearly 

dependent at some stage in the solution process. In this case your numerical procedure 

will fail, and it can tell you that it has failed. 

• Accumulated round off errors in the solution process can swamp the true solution. This 

problem particularly emerges if N is too large. The numerical procedure does not fail 

algorithmically. However, it returns a set of x‟s that are wrong, as can be discovered by 

direct substitution back into the original equations. The closer a set of equations is to 

being singular, the more likely this is to happen. 
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Matrices 

Equation (1) can be written in matrix form as 

A · x = b      (2) 

Here the raised dot denotes matrix multiplication, A is the matrix of coefficients, x is the 

column vector of unknowns and b is the right-hand side written as a column vector, 

 

11 12 1

21 22 2

1 2

...

...

... ... ... ...

...

N

N

M M MN

a a a

a a a

a a a

 
 
 
 
 
  

A  

1

2

..

N

x

x

x

 
 
 
 
 
  

x  

1

2

..

M

b

b

b

 
 
 
 
 
  

b  

Finding Solution 

There are so many ways to solve this set of equations. Below are some important 

methods. 

 

(1) Using the backslash and pseudo-inverse operator 

 

In MATLAB, the easiest way to determine whether Ax = b has a solution, and to find 

such a solution when it does, is to use the backslash operator. Exactly what \A b returns 

is a bit complicated to describe, but if there is a solution to A · x = b, then \A b returns 

one. Warnings: (1) \A b returns a result in many cases when there is no solution to A · x 

= b. (2) \A b sometimes causes a warning to be issued, even when it returns a solution. 

This means that you can't just use the backslash operator: you have to check that what it 

returns is a solution. (In any case, it's just good common sense to check numerical 

computations as you do them.) In MATLAB this can be done as follows: 

 

Using backslash operator: 

x = A\b;  

 

You can also use the pseudo-inverse operator:  

x=pinv(A)*b; % it is also guaranteed to solve Ax = b, if Ax = b has a solution.  

 

As with the backslash operator, you have to check the result. 

 

(2) Using Gauss-Jordan Elimination and Pivoting 

 

To illustrate the method let us consider three equations with three unknowns: 

 

11 1 12 2 13 3 14a x a x a x a           (A) 

21 1 22 2 23 3 24a x a x a x a           (B) 

31 1 32 2 33 3 34a x a x a x a           (C) 

Here the quantities bi, i = 1, 2, . . .,M‟s are replaced by aiN+1, where i=1,2, ….M for 

simplicity of understanding the algorithm. 
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The First Step is to eliminate the first term from Equations (B) and (C). (Dividing (A) by 

a11 and multiplying by a21 and subtracting from (B) eliminates x1 from (B) as shown 

below) 

1311 12 14
21 21 1 22 21 2 23 21 3 24 21

11 11 11 11

( ) ( ) ( ) ( )
aa a a

a a x a a x a a x a a
a a a a

        

Let, 21
2

11

a
k

a
 , then 

21 2 11 1 22 2 12 2 23 2 13 3 24 2 14( ) ( ) ( ) ( )a k a x a k a x a k a x a k a        

Similarly multiplying equation (A) by 31
3

11

a
k

a
 and subtracting from (C), we get 

31 3 11 1 32 3 12 2 33 3 13 3 34 3 14( ) ( ) ( ) ( )a k a x a k a x a k a x a k a        

Observe that 21 2 11( )a k a and 31 3 11( )a k a are both zero. 

In the steps above it is assumed that a11 is not zero. This case will be considered later in 

this experiment. 

 

The above elimination procedure is called triangularization. 

 

Algorithm for triangularizing n equations in n unknowns: 

 

1  1 to  and 1 to ( 1) in steps of 1  read  ijfor i n j n do a endfor    

2  1 to ( 1) in steps of 1 for k n do   

3   ( 1) to  in steps of 1 for i k n do   

4  /ik kku a a  

5    to ( 1) in steps of 1 for j k n do   

6    ij ij kja a ua endfor   

  endfor  

 endfor  

The reduced equations are: 

11 1 12 2 13 3 14a x a x a x a           

 22 2 23 3 24a x a x a   

 32 2 33 3 34a x a x a   

The next step is to eliminate 32a from the third equation. This is done by multiplying 

second equation by 32 22/u a a and subtracting the resulting equation from the third. So, 

same algorithm can be used. 

Finally the equations will take the form: 

11 1 12 2 13 3 14a x a x a x a           

 22 2 23 3 24a x a x a   

  33 3 34a x a  

The above set of equations are said to be in triangular (Upper) form. 
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From the above upper triangular form of equations, the values of unknowns can be 

obtained by back substitution as follows: 

   3 34 33/x a a   

    2 24 23 3 22( ) /x a a x a   

   2 14 12 2 13 3 11( ) /x a a x a x a    

Algorithmically, the back substitution for n unknowns is shown below: 

1 ( 1) /n n n nnx a a  

2  ( 1) to 1 in step of -1 for i n do   

3 0sum  

4   ( 1) to n in steps of 1 for j i do   

5   ij jsum sum a x endfor   

6 ( 1)( ) /i i n iix a sum a   

 endfor  

 

 

Pivoting 

 

In the triangularization algorithm we have used, 

/ik kku a a  

Here it is assumed that kka is not zero. If it happens to be zero or nearly zero, the 

algorithm will lead to no results or meaningless results. If any of the kka is small it would 

be necessary to reorder the equations. It is noted that the value of kka would be modified 

during the elimination process and there is no way of predicting their values at the start of 

the procedure. 

The elements kka are called pivot elements. In the elimination procedure the pivot should 

not be zero or a small number. In fact for maximum precision the pivot element should be 

the largest in absolute value of all the elements below it in its column, i.e. kka should be 

picked up as the maximum of all mka where, m k  
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So, during the Gauss elimination, mka elements should be searched and the equation with 

the maximum value of mka should be interchanged with the current position. For example 

if during elimination we have the following situation: 

1 2 3

2 3

2 3

2 3 4

0.3 4 5

8 3 6

x x x

x x

x x

  

 

  

 

As 8 0.3,   2
nd

 and 3
rd

 equations should be interchanged to yield: 

1 2 3

2 3

2 3

2 3 4

8 3 6

0.3 4 5

x x x

x x

x x

  

  

 

 

It should be noted that interchange of equations does not affect the solution. 

The algorithm for picking the largest element as the pivot and interchanging the 

equations is called pivotal condensation. 

 

Algorithm for pivotal condensation 

 

1 max kka  

2 p k  

3  ( 1) to n in steps of 1 for m k do   

4   ( max) thenmkif a   

5  max mka  

6  p m  

7  endif  

 endfor  

8 ( ~ )if p k  

9    to ( 1) in steps of 1 for q k n do   

10   kqtemp a  
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11   kq pqa a  

12   pqa temp  

  endfor  

 endif    

 

(3) Using Gauss-Seidel Iterative Method 

There are several iterative methods for the solution of linear systems. One of the efficient 

iterative methods is the Gauss-Seidel method. 

Let us consider the system of equations: 

1 2 3

1 2 3

1 2 3

4 7

4 8 21

2 5 15

x x x

x x x

x x x

  

   

   

 

The Gauss-Seidel iterative process is suggested by the following equations: 

1 2 3
1

1
1 1 3

2

1 1
1 1 2

3

7

4

21 4

8

15 2

5

k k
k

k k
k

k k
k

x x
x

x x
x

x x
x






 


 


 


 


 

The very first iteration, that is 0 0 0

2 3, ,..... nx x x  (for n equations) are set equal to zero and 1

1x  

is calculated. The main point of Gauss-Seidel iterative process to observe is that always 

the latest approximations for the values of variables are used in an iteration step. 

 

It is to be noted that in some cases the iteration diverges rather than it converges. Both the 

divergence and convergence can occur even with the same set of equations but with the 

change in the order. The sufficient condition for the Gauss-Seidel iteration to converge is 

stated below. 

The Gauss-Seidel iteration for the solution will converge (if there is any solution) if the 

matrix A  (as defined previously) is strictly diagonally dominant matrix. 

 

A matrix A  of dimension N N  is said to be strictly diagonally dominant provided that  
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1

 for 1,2,...
N

kk kj

j
j k

a a k N



   

Report: 

 

# Exercise 1.  

Given the simultaneous equations shown below (i) triangularize them (ii) use back 

substitution to solve for 1x , 2x , 3x . 

1 2 3

1 2 3

1 2 3

2 3 5 23

3 4 14

6 7 2 26

x x x

x x x

x x x

  

  

  

 

For generalization, you will have to write a program for triangularizing n equations in n 

unknowns with back substitution. 

 

#Exercise 2.  

 Modify the MATLAB program written in exercise 1 to include pivotal condensation. 

 

#Exercise 3.  

Try to solve the following systems of equations (i) Gauss-Jordan elimination (ii) Gauss-

Jordan elimination with pivoting 

(A)  

1 2 3

1 2 3

1 2 3

2 4 6 4

5 3 10

3 2 5

x x x

x x x

x x x

   

  

  

     (B) 

1 2 3

1 2 3

1 2 3

6 7

2 9 2

2 3 10

x x x

x x x

x x x

  

   

  

 

 

(C) 

1 2 3

1 2 3 4

1 2 3 4

1 2 4

4 8 4 8

5 4 3 4

4 7 2 10

3 2 4

x x x

x x x x

x x x x

x x x

  

    

   

   

  

 

#Exercise 4.  

Solve the following equations using Gauss-Seidel iteration process: 
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(A)  
1 2

1 2

8 3 10

4 6

x x

x x

 

  
      (B)  

4 15

5 9

x y

x y

 

 
 

 

(C)  

1 2 3

1 2 3

1 2 3

5 10

2 8 11

4 3

x x x

x x x

x x x

  

  

   

       (D) 

2 8 11

5 10

4 3

x y z

x y z

x y z

  

  

   
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Experiment 5: Solutions to Non-Linear Equations 

(Bisection Method & False-Position Method) 

 

 

Bisection method: 

 

The Bisection method is one of the simplest procedures for finding root of a function in a 

given interval. 

The procedure is straightforward. The approximate location of the root is first determined 

by finding two values that bracket the root (a root is bracketed or enclosed if the function 

changes sign at the endpoints). Based on these a third value is calculated which is closer 

to the root than the original two value. A check is made to see if the new value is a root. 

Otherwise a new pair of bracket is generated from the three values, and the procedure is 

repeated.  

 
 

 

Consider a function ( )d x and let there be two values of x , lowx  and upx ( upx > lowx ), 

bracketing a root of ( )d x . 

 

Steps: 

 

1. The first step is to use the brackets lowx  and upx  to generate a third value that is 

closer to the root. This new point is calculated as the mid-point between lowx  and, 

namely 
2

low up

mid

x x
x


 . The method therefore gets its name from this bisecting 

of two values. It is also known as interval halving method. 
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2. Test whether midx is a root of ( )d x by evaluating the function at midx . 

3. If  midx is not a root,  

            a. If ( )lowd x and ( )midd x have opposite signs i.e. ( )lowd x . ( )midd x <0, 

                 root is in left half of interval. 

            b. If ( )lowd x and ( )midd x have same signs i.e. ( )lowd x . ( )midd x >0, 

                 root is in right half of interval. 

       4. Continue subdividing until interval width has been reduced to a size 

            where = selected x tolerance. 

 

Algorithm: Bisection Method 

 

Input xLower, xUpper, xTol 

yLower = f(xLower) (* invokes fcn definition *) 

xMid = (xLower + xUpper)/2.0 

yMid = f(xMid) 

iters = 0 (* count number of iterations *) 

While ( (xUpper - xLower)/2.0 > xTol ) 

iters = iters + 1 

if( yLower * yMid > 0.0) Then xLower = xMid 

Else xUpper = xMid 

Endofif 

xMid = (xLower + xUpper)/2.0 

yMid = f(xMid) 

Endofwhile 

Return xMid, yMid, iters (* xMid = approx to root *) 

 

Note: For a given x tolerance (epsilon), we can calculate the number of iterations 

directly. The number of divisions of the original interval is the smallest value of n 

that satisfies: 


n

lowup xx

2
or 



lowupn
xx 

2   

Thus 








 




lowup xx
n 2log . 

In our previous example, lowx  = -1, upx =0 and = selected x tolerance = 410 . 

So we have 14n . 

 

False-Position Method (Regula Falsi) 

 

A shortcoming of the bisection method is that, in dividing the interval from lowx  to 

upx into equal halves, no account is taken of the magnitude of )( lowxf and )( upxf . For 

example, if )( lowxf  is much closer to zero than )( upxf , it is likely that the root is closer 

to lowx  than to upx . An alternative method that exploits this graphical insight is to join 

)( lowxf and )( upxf  by a straight line. The intersection of this line with the x  axis 
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represents an improved estimate of the root. The fact that the replacement of the curve by 

a straight line gives the false position of the root is the origin of the name, method of 

false position, or in Latin, Regula Falsi. It is also called the Linear Interpolation Method. 

 

 
Using similar triangles, the intersection of the straight line with the x  axis can be 

estimated as 

 

up

up

low

low

xx

xf

xx

xf






)()(
 

 

That is 
)()(

))((

uplow

uplowup

up
xfxf

xxxf
xx




  

This is the False Position formulae. The value of x then replaces whichever of the two 

initial guesses, lowx  or upx , yields a function value with the same sign as )(xf . In this 

way, the values of lowx  and upx  always bracket the true root. The process is repeated until 

the root is estimated adequately. 

 

Report: 

 

#Exercise 1. 

 Find the real root of the equation 5( ) 1d x x x   using Bisection Method. lowx  = -1, 

upx =0 and = selected x tolerance = 410 . 

 

#Exercise 2.   

Find the root of the equation 5( ) 1d x x x   using False Position Method. lowx  = -1, 

upx =0 and = selected x tolerance = 410 . (Develop the algorithm by yourself. It is very 

similar to Bisection Method). 
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Experiment 6: Solutions to Non-Linear Equations 

(Newton Raphson Method & Secant Method) 

 

 

Newton Raphson Method: 

 
 If )(xf , )(xf   and )(xf   are continuous near a root x , then this extra information 

regarding the nature of )(xf can be used to develop algorithms that will produce 

sequences }{ kx  that converge faster to x than either the bisection or false position 

method. The Newton-Raphson (or simply Newton's) method is one of the most useful 

and best-known algorithms that relies on the continuity of )(xf   and )(xf  .   

The attempt is to locate root by repeatedly approximating )(xf with a linear function at 

each step. If the initial guess at the root is kx , a tangent can be extended from the point 

 )(, kk xfx . The point where this tangent crosses the x  axis usually represents an 

improved estimate of the root. 

 

  

  )(xf  

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

x  kx  1kx  

)( kxf  

           Slope = )( kxf   

0  
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The Newton-Raphson method can be derived on the basis of this geometrical 

interpretation. As in the figure, the first derivative at x  is equivalent to the slope: 

1

0)(
)(






kk

k

k
xx

xf
xf   

 

which can be rearranged to yield 

 

)(

)(
1

k

k

kk
xf

xf
xx


   

which is called the Newton Raphson formulae.  

 

So the Newton-Raphson Algorithm actually consists of the following steps: 

1. Start with an initial guess 0x  and an x-tolerance . 

2. Calculate 
)(

)(
1

k

k

kk
xf

xf
xx


  ,2,1,0k   

 

Algorithm - Newton’s Method 

Input x0, xTol 

iters = 1 

dx = -f(x0)/fDeriv(x0) (* fcns f and fDeriv *) 

root = x0 + dx 

While (Abs(dx) > xTol) 

dx = -f(root)/fDeriv(root) 

root = root + dx 

iters = iters + 1 

End of while 

Return root, iters 

 

 

 

The Secant Method: 

The Newton-Raphson algorithm requires two functions evaluations per iteration, 

)( kxf and )( kxf  .  Historically, the calculation of a derivative could involve 

considerable effort. Moreover, many functions have non-elementary forms (integrals, 

sums etc.), and it is desirable to have a method for finding a root that does not depend on 

the computation of a derivative. The secant method does not need a formula for the 

derivative and it can be coded so that only one new function evaluation is required per 

iteration.   
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The formula for the secant method is the same one that was used in the Regula Falsi 

method, except that the logical decisions regarding how to define each succeeding term 

are different.   

In the Secant method, the derivative can be approximated by a backward finite divided 

difference, as in the figure, 

kk

kk

k
xx

xfxf
xf










1

1 )()(
)(  

  

 
 

 

)(xf  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

)( kxf  

)( 1kxf  

1kx  
kx

 

x  
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Using Newton-Raphson method, 

)(

)(
1

k

k

kk
xf

xf
xx


  

Substituting )( kxf  , 

)()(

))((

1

1

1

kk

kkk

kk
xfxf

xxxf
xx










  

 

Notice that the approach requires initial estimates of x .  

 

Algorithm - Secant Method 

Input xk, xkMinus1, xTol, maxiters 

iters = 1 

yk =f(xk) (* invokes function f *) 

ykMinus1 = f(xkMinus1) 

root = (xkMinus1*yk - xk*ykMinus1)/(yk - ykMinus1) 

ykPlus1 = f(root) 

While( (Abs(root - xk) > xTol) and (iters < maxiters) ) 

xkMinus1 = xk 

ykMinus1 = yk 

xk = root 

yk = ykPlus1 

root = (xkMinus1*yk - xk*ykMinus1)/(yk - yk Minus1) 

ykPlus1 = f(root) 

iters = iters + 1 

Endofwhile 

Return root, ykPlus1, iters 

 

 

Report: 

 

# Exercise 3.   

Use the Newton Raphson method to estimate the root of 1)(  xexf , employing an 

initial guess of .00 x  The tolerance is = 810 . 

 

# Exercise 4.  

Find the root of the equation xexxxf  )sin(3)( , starting values are 0 and 1. The 

tolerance limit is 0.0000001. 
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Experiment 7: Interpolation 

 

 

Introduction: 

 

Forming a polynomial: 

 

A polynomial, p(x) of degree n in MATLAB is stored as a row vector, p, of length n+1. 

The components represent the coefficients of the polynomial and are given in the 

descending order of the power of x, that is  

 p = [an an-1 ……….. a1 a0] 

is interpreted as  

p(x) = anx
n
+ an-1x

n-1
+ ………..+ a1x+a0 

 

In MATLAB the following commands are used to evaluate a polynomial: 

polyval, poly, roots, conv etc. 

 

 

Interpolation: 

  

In the mathematical subfield of numerical analysis, interpolation is a method of 

constructing new data points from a discrete set of known data points. 

In engineering and science one often has a number of data points, as obtained by 

sampling or some experiment, and tries to construct a function which closely fits those 

data points. This is called curve fitting. Interpolation is a specific case of curve fitting, in 

which the function must go exactly through the data points. 

Definition: 

Given a sequence of n distinct numbers xk called nodes and for each xk a second number 

yk, we are looking for a function f so that 

 

A pair xk,yk is called a data point and f is called the interpolant for the data points. 

 

For example, suppose we have a table like this, which gives some values of an unknown 

function f. The data are given in the table: 

                                             

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Discrete
http://en.wikipedia.org/wiki/Set
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Sampling_(statistics)
http://en.wikipedia.org/wiki/Experiment
http://en.wikipedia.org/wiki/Curve_fitting
http://en.wikipedia.org/wiki/Sequence
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 Table 1 

x f(x) 

0 0 

1 0.8415 

2 0.9093 

3 0.1411 

4 -0.7568 

5 -0.9589 

6 -0.2794 

 

The plot can be shown as: 

. 

 
 

What value does the function have at, say, x = 2.5? Interpolation answers questions like 

this. 

 

Types of interpolation: 

A. Linear interpolation 

One of the simplest methods is linear interpolation. Consider the above example of 

determining f(2.5). We join the data points by linear interpolation and get the following 

plot: 

http://en.wikipedia.org/wiki/Linear
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Noe we can get f(2.5). Since 2.5 is midway between 2 and 3, it is reasonable to take f(2.5) 

midway between f(2) = 0.9093 and f(3) = 0.1411, which yields 0.5252. 

Generally, linear interpolation takes two data points, say (xa,ya) and (xb,yb), and the 

interpolant is given by 

 

This formula can be interpreted as a weighted mean. 

Linear interpolation is quick and easy, but it is not very precise.  

B. Polynomial interpolation 

Polynomial interpolation is a generalization of linear interpolation. Note that the linear 

interpolant is a linear function. We now replace this interpolant by a polynomial of higher 

degree. 

Consider again the problem given above. The following sixth degree polynomial goes 

through all the seven points: 

f(x) = − 0.0001521x6 − 0.003130x5 + 0.07321x4 − 0.3577x3 + 0.2255x2 + 
0.9038x 

Substituting x = 2.5, we find that f(2.5) = 0.5965. 

Generally, if we have n data points, there is exactly one polynomial of degree n−1 going 

through all the data points. The interpolation error is proportional to the distance between 

the data points to the power n.  

However, polynomial interpolation also has some disadvantages. Calculating the 

interpolating polynomial is relatively very computationally expensive  Furthermore, 

polynomial interpolation may not be so exact after all, especially at the end points.  

http://en.wikipedia.org/wiki/Weighted_mean
http://en.wikipedia.org/wiki/Linear_function
http://en.wikipedia.org/wiki/Polynomial
http://en.wikipedia.org/wiki/Degree_(mathematics)
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a. Lagrange Polynomial: 

The Lagrange interpolating polynomial is the polynomial ( )P x  of degree ( 1)n   that 

passes through the n  points , , ..., , and is 

given by  

 

where  

 

Written explicitly, 

  

  

 

When constructing interpolating polynomials, there is a tradeoff between having a better 

fit and having a smooth well-behaved fitting function. The more data points that are used 

in the interpolation, the higher the degree of the resulting polynomial, and therefore the 

greater oscillation it will exhibit between the data points. Therefore, a high-degree 

interpolation may be a poor predictor of the function between points, although the 

accuracy at the data points will be "perfect."  

For   points,  

  
 

Note that the function ( )P x  passes through the points , as can be seen for the case 

,  

  
 

  
 

  
 

 

 

http://mathworld.wolfram.com/Polynomial.html
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Algorithm for the Lagrange Polynomial: To construct the Lagrange polynomial 

 
of degree n, based on the n+1 points for . The Lagrange 

coefficient polynomials for degree n are: 

 

for . 

So, for a given x and a set of (N+1) data pairs, (xi, fi), i= 0, 1, . ….. N: 

Set SUM=0 

DO FOR i=0 to N 

Set P=1 

DO FOR j=0 to N 

IF j~=i 

Set P=P*(x-x(j))/(x(i)-x(j)) 

End DO(j) 

 

Report: 

#Exercise 1:  

Construct a polynomial such that C(x)= A(x)*B(x) 

Where A(x)= 3x
2
+2x-4 and B(x)= 2x

3
-2 

Also find the roots of A(x), B(x) and C(x). 

#Exercise 2. 

 Plot the curve corresponding to table1 using linear interpolation. 

#Exercise 3.  

sin( ); 0 :10; ( ) 0 :0.25:10;y x x x i    Construct the interpolant y and plot. 

#Exercise 4.  

Write a MATLAB program implementing Lagrange Polynomial. 

#Exercise 5. 

 Construct a Lagrange interpolating polynomials for the data points given in table 1. 
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Experiment 8: Numerical Differentiation 

 
 
Introduction: 

 

We are familiar with the analytical method of finding the derivative of a function when 

the functional relation between the dependent variable y and the independent variable x is 

known. However, in practice, most often functions are defined only by tabulated data, or 

the values of y for specified values of x can be found experimentally. Also in some cases, 

it is not possible to find the derivative of a function by analytical method. In such cases, 

the analytical process of differentiation breaks down and some numerical process have to 

be invented. The process of calculating the derivatives of a function by means of a set of 

given values of that function is called numerical differentiation. This process consists in 

replacing a complicated or an unknown function by an interpolation polynomial and then 

differentiating this polynomial as many times as desired.    

 

 

 

Forward Difference Formula: 

 

All numerical differentiation are done by expansion of Taylor series 

 
2 3( ) ( )

( ) ( ) ( )
2 6

f x h f x h
f x h f x f x h

 
      ……………..(1) 

 

From (1) 

 

)(
)()(

)( hO
h

xfhxf
xf 


 ……………..(2) 

 

Where, )(hO  is the truncation error, which consists of terms containing h and higher 

order terms of h. 

 

Central Difference Formula (of order O (h
2
)): 

 

.......
6

)(

2

)(
)()()(

3

1

2 hcfhxf
hxfxfhxf





 ….(3) 
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.......
6

)(

2

)(
)()()(

3

2

2 hcfhxf
hxfxfhxf





 …(4) 

 

 

Using (3) and (4) 

 

)(
2

)()(
)( 2hO

h

hxfhxf
xf 


 ……….(5) 

 

Where, )( 2hO  is the truncation error, which consists of terms containing h
2
 and higher 

order terms of h. 

 

Central Difference Formula (of order O (h
4
)): 

 

Using Taylor series expansion it can be shown that  

 

)(
12

)2()(8)(8)2(
)( 4hO

h

hxfhxfhxfhxf
xf 


 ……….(6) 

 

Here the truncation error reduces to h
4 

 

 

Richardson’s Extrapolation: 

 

We have seen that 

 

)(
2

)()(
)( 2hO

h

hxfhxf
xf 


  

 

Which can be written as 

  

2( ) ( )
( )

2

f x h f x h
f x Ch

h

  
    

                                       Or, 2

0( ) ( )f x D h Ch   ……………………………….(7) 

 

If step size is converted to 2h 

 

                          2

0( ) (2 ) 4f x D h Ch   ………………………….……(8) 

Using (7) and (8) 

 

0 0 2 1 1 24 ( ) (2 ) 8 8
( )

3 12

D h D h f f f f
f x

h

     
   ……………….(9) 

 

Equation (9) is same as equation (6) 
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The method of obtaining a formula for ( )f x  of higher order from a formula of lower 

order is called extrapolation. The general formula for Richardson‟s extrapolation is  

 

2 2 2 21 14 ( ) (2 )
( ) ( ) ( ) ( )

4 1

k
k kk k

k k

D h D h
f x D h O h O h  
    


……(10) 

 

 

Algorithm for Richardson Approximation: 

 

%Input-f(x) is the input function 

%         -delta is the tolerance for error 

% -toler is the tolerance for relative error 

%Output-D is the matrix of approximate derivatives 

%   -err is the error bound 

%   -relerr is the relative error bound 

%           -n is the coordinate for best approximation 

 

Define 

  err=1 

relerr=1 

  h=1 

 j=1 

 

Compute D(1,1)=(f(x+h)-f(x-h))/(2h) 

 

While relerr > toler & err > delta &j <12 

 

Compute 

h=h/2; 

D(j+1,1)=(f(x+h)-f(x-h))/(2h) 

 

DO For k=1:j 

Compute D(j+1,k+1)=D(j+1,k)+ (D(j+1,k)-D(j,k))/((4^k)-1) 

END DO(k) 

 

Compute 

err=|D(j+1,j+1)-D(j,j)| 

relerr==2err/(|D(j+1,j+1)|+|D(j,j)|+eps) 

j=j+1 

END While 
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Report: 

 

#Exercise 1: 

Given f(x) =e
x
, find )1(f   using h=10

-1
, 10

-2
,,,, upto 10

-10
. Find out the error in each case 

by comparing the calculated value with exact value (Use forward difference formula). 

 

#Exercise 2: 

Given f(x) =e
x
, find )1(f   using h=10

-1
, 10

-2
,,,, up to 10

-10
. Use equation (5). Find out the 

error in each case by comparing the calculated value with exact value. 

 

#Exercise 3: 

Given f(x) =sin (cos (1/x)) evaluate )2/1(f  .  Start with h =1 and reduce h to 1/10 of 

previous step in each step. If Dn+1 is the result in (n+1) th step and Dn is the result in nth 

step then continue iteration until |Dn+1-Dn|>=|Dn-Dn-1| or |Dn-Dn-1| <tolerance. Use 

equation (6) for finding D.  

 

#Exercise 4: 

Given f(x) =sin (x
3
-7x

2
+6x+8) evaluate

1 5
( )

2
f


 .  Use Richardson‟s extrapolation. 

Approximation should be accurate up to 13 decimal places. 
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Experiment 09: Numerical Integration 

 

Introduction 

There are two cases in which engineers and scientists may require the help of numerical 

integration technique. (1) Where experimental data is obtained whose integral may be 

required and (2) where a closed form formula for integrating a function using calculus is 

difficult or so complicated as to be almost useless. For example the integral  

3

0
( ) .

1

x

t

t
t dt

e
 

  

Since there is no analytic expression for ( )x , numerical integration technique must be 

used to obtain approximate values of ( )x . 

Formulae for numerical integration called quadrature are based on fitting a polynomial 

through a specified set of points (experimental data or function values of the complicated 

function) and integrating (finding the area under the fitted polynomial) this 

approximating function. Any one of the interpolation polynomials studied earlier may be 

used. 

 

Some of the Techniques for Numerical Integration 

 

Trapezoidal Rule 

Assume that the values of a function ( )f x are given at x1, x1+h, x1+2h ……x1+nh and it 

is required to find the integral of ( )f x between x1 and x1+nh. The simplest technique to 

use would be to fit straight lines through f(x1), f(x1+h) ……and to determine the area 

under this approximating function as shown in Fig 7.1.  
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f(x) 

x 

f2 

f1 

f3 

f4 

x1 x1+h x1+2h x1+3h x1+4h x1+5h 

 

 

 

 

Fig. 7.1 Illustrating trapezoidal rule 

 

For the first two points we can write: 

1

1

1 2( ) ( )
2

x h

x

h
f x dx f f



   

This is called first-degree Newton-Cotes formula. 

From the above figure it is evident that the result of integration between x1 and x1+nh is 

nothing but the sum of areas of some trapezoids. In equation form this can be written as: 

1

1

1

1

( )
( )

2

x nh n
i i

ix

f f
f x dx h








  

The above integration formula is known as Composite Trapezoidal rule. 

The composite trapezoidal rule can explicitly be written as: 

1

1

1 2 3 1( ) ( 2 2 ......2 )
2

x nh

n n

x

h
f x dx f f f f f



      

Simpson’s 1/3 Rule 

This is based on approximating the function f(x) by fitting quadratics through sets of 

three points. For only three points it can be written as: 

1

1

2

1 2 3( ) ( 4 )
3

x h

x

h
f x dx f f f



    

This is called second-degree Newton-Cotes formula. 

It is evident that the result of integration between x1 and x1+nh can be written as 
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1

1

1 2

1,3,5,..., 1

1 2 3 4 5 6 1

( ) ( 4 )
3

( 4 2 4 2 4  ... 4 )
3

x nh

i i i

i nx

n n

h
f x dx f f f

h
f f f f f f f f



 

 



  

       


 

In using the above formula it is implied that f is known at an odd number of points (n+1 

is odd, where n is the no. of subintervals). 

 

Simpson’s 3/8 Rule 

This is based on approximating the function f(x) by fitting cubic interpolating polynomial 

through sets of four points. For only four points it can be written as: 

1

1

3

1 2 3 4

3
( ) ( 3 3 )

8

x h

x

h
f x dx f f f f



     

This is called third-degree Newton-Cotes formula. 

It is evident that the result of integration between x1 and x1+nh can be written as 

1

1

1 2 3

1,4,7,..., 2

1 2 3 4 5 6 7 2 1 1

( ) ( 3 3 )
3

3
( 3 3 2 3 3 2 + ... 2 3 3 )

8

x nh

i i i i

i nx

n n n n

h
f x dx f f f f

h
f f f f f f f f f f f



  

 

  

   

          


 

In using the above formula it is implied that f is known at (n+1) points where n is 

divisible by 3. 

An algorithm for integrating a tabulated function using composite trapezoidal rule: 

Remarks: f1, f2,………, fn+1 are the tabulated values at x1, x1+h,………x1+nh    (n+1 points) 

 

1 Read h 

2  1 to 1 Read  ifor i n f endfor   

3 1 1( ) / 2nsum f f    

4  2 to  for j n do  

5  jsum sum f   

 endfor  
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6 int  . egral h sum  

7  intwrite egral  

 stop 

 

An algorithm for integrating a known function using composite trapezoidal rule: 

If f(x) is given as a closed form function such as ( ) cosxf x e x  and we are asked to 

integrate it from x1 to x2, we should decide first what h should be. Depending on the 

value of h we will have to evaluate the value of f(x) inside the program for x=x1+nh 

where n=0,1, 2,….n and 2 1( ) /n x x h  . 

1 2 1( ) /h x x n   

2 1x x  

3 ( )sum f x  

4  2 to  for i n do  

5  x x h   

6  2 ( )sum sum f x   

 endfor  

7 2x x  

8 ( )sum sum f x   

9 int  . 
2

h
egral sum  

10  intwrite egral  

 stop 

 

Adaptive Integration 

When f(x) is a known function we can choose the value for h arbitrarily. The problem is 

that we do not know a priori what value to choose for h to attain a desired accuracy (for 

example, for an arbitrary h sharp picks of the function might be missed). To overcome 

this problem, we can start with two subintervals, 1 2 1( ) / 2h h x x   and apply either 

trapezoidal or Simpson‟s 1/3 rule. Then we let 2 1 / 2h h and apply the formula again, 
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now with four subintervals and the results are compared. If the new value is sufficiently 

close, the process is terminated. If the 2
nd

 result is not close enough to the first, h is 

halved again and the procedure is repeated. This is continued until the last result is close 

enough to its predecessor. This form of numerical integration is termed as adaptive 

integration. 

The no. of computations can be reduced because when h is halved, all of the old points at 

which the function was evaluated appear in the new computation and thus repeating 

evaluation can be avoided. This is illustrated below. 

 

 

 

 

 

 

 

 

 

 

 

 

An algorithm for adaptive integration of a known function using trapezoidal rule: 

1 1 2Read , ,x x e   Remark: The allowed error in integral is e 

2 2 1h x x   

3 1 1 2( ( ) ( )) / 2S f x f x   

4 1 1 . I h S  

5 1i   

 Repeat 

6  1 / 2x x h   

7   1 to  for j i do  

k=1 

k=2 

k=3 

k=4 

o = New points 

 = Old points 
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8   1 1 ( )S S f x   

9   x x h   

  endfor 

10  2i i  

11  / 2h h  

12  0 1I I  

13  1 1 . I h S  

14 1 0 1  . until I I e I   

15 1 ,  ,  write I h i  

 Stop 

 

 

Report: 

 

# Exercise1.  

Integrate the function tabulated in Table 7.1 over the interval from x=1.6 to x=3.8 using 

composite trapezoidal rule with (a) h=0.2, (b) h=0.4 and (c) h=0.6 

Table 7.1 

X f(x) X f(x) 

1.6 4.953 2.8 16.445 

1.8 6.050 3.0 20.086 

2.0 7.389 3.2 24.533 

2.2 9.025 3.4 29.964 

2.4 11.023 3.6 36.598 

2.6 13.468 3.8 44.701 
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The data in Table 7.1 are for ( ) xf x e . Find the true value of the integral and compare 

this with those found in (a), (b) and (c). 

 

 

 

 

# Exercise 2. 

 (a) Integrate the function tabulated in Table 7.1 over the interval from x=1.6 to   

       x=3.6    using Simpson‟s composite 1/3 rule. 

(b) Integrate the function tabulated in Table 7.1 over the interval from x=1.6 to  x=3.4 

using Simpson‟s composite 3/8 rule. 

 

# Exercise 3. 

 (a) Find (approximately) each integral given below using the composite trapezoidal 

 rule with 12n  . 

 (i) 

1

2 1

1

(1 )x dx



     (ii) 

4

2

0

xx e dx

  

(b) Find (approximately) each integral given above using the Simpson‟s  composite 1/3 

and 3/8 rules with 12n  .  

 

# Exercise 4. 

 Evaluate the integral of 
22xxe between x=0 and x=2 using a tolerance value 

 sufficiently small as to get an answer within 0.1% of the true answer, 0.249916 

(Use adaptive integration for both Ex 4 & 5). 

 

# Exercise 5. 

 Evaluate the integral of 2sin (16 ) between 0x x   and / 2x  . Why the result is 

erroneous? How can this be solved? (The correct result is / 4 ) 
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Experiment 10: Solutions to Linear Differential Equations  

 

 

In mathematics, a differential equation is an equation in which the derivatives of a 

function appear as variables. Differential equations have many applications in physics 

and chemistry, and are widespread in mathematical models explaining biological, social, 

and economic phenomena. 

      

Differential equations are divided into two types: 

 

a. An Ordinary Differential Equation (ODE) only contains function of one 

variable, and derivatives in that variable. 

b. A Partial differential Equation (PDE) contains multivariate functions and their 

partial derivatives. 

 

The order of a Differential equation is that of the highest derivative that it contains. For 

instance, a first-order Differential equation contains only first derivatives.  

 

A linear differential equation of order n is a differential equation written in the 

following form:  

 
1

1 1 01
( ) ( ) ( ) ( ) ( )

n n

n nn n

d y d y dy
a x a x a x a x y f x

dxdx dx



 
      

where ( ) 0na x  . 

 

Initial value problem: 

 

A problem in which we are looking for the unknown function of a differential equation 

where the values of the unknown function and its derivatives at some point are known is 

called an initial value problem (in short IVP).  

  

If no initial conditions are given, we call the description of all solutions to the differential 

equation the general solution.  

 

http://mathematics.mindbit.com/
http://equation.mindbit.com/
http://derivative.mindbit.com/
http://function-(mathematics).mindbit.com/
http://physics.mindbit.com/
http://chemistry.mindbit.com/
http://mathematical-model.mindbit.com/
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Methods of solving the Ordinary Differential Equations: 

 

1. Euler’s Method: 

 

Let ( ) ( , ( ))y x f x y x   

      0 0( )y x y  

Here ( , )f x y is a given function, 0y  is a given initial value for y at 0x x . 

The unknown in the problem is the function ( )y x . 

 

Our goal is to determine (approximately) the unknown function ( )y x for 0x x . We are 

told explicitly the value of 0( )y x , namely 0y . Using the given differential equation, we 

can also determine exactly the instantaneous rate of change of y  at 0x . The basic idea is 

simple. This differential equation tells us how rapidly the variable y is changing and the 

initial condition tells us where y starts 

0 0, 0 0 0( ) ( ( )) ( , ).y x f x y x f x y    

 

If the rate of change of ( )y x were to remain 0 0( , )f x y for all time, then ( )y x would be 

exactly 0 0 0 0( , )( )y f x y x x  . The rate of change of  ( )y x does not remain  0 0( , )f x y  for 

all time, but it is reasonable to expect that it remains close to 0 0( , )f x y  for x  close to 0x .  

If this is the case, then the value of ( )y x will remain close to 0 0 0 0( , )( )y f x y x x  for x  

close to 0x . So pick a small number h and define 

1 0x x h   

1 0 0 0 1 0 0 0 0( , )( ) ( , )y y f x y x x y f x y h      

By the above argument 

1 1( )y x y  

 

Now we start over. We now know the approximate value of  y at 1x . If  1( )y x were 

exactly 1y , then the instantaneous rate of change of y at 1x would be exactly 1 1( , )f x y . If 

this rate of change were to persist for all future value of x , ( )y x  would be exactly 

1 1 1 1( , )( )y f x y x x  . 

 

As  1( )y x is only approximately 1y and as the rate of change of ( )y x varies with x , the 

rate of  change of  ( )y x is only approximately 1 1( , )f x y and only for x near 1x . So we 

approximate ( )y x by 1 1 1 1( , )( )y f x y x x  for x  bigger than, but close to, 1x . Defining 

2 1 0 2x x h t h     

2 1 1 1 2 1 1 1 1( , )( ) ( , )y y f x y x x y f x y h      
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We have 2 2( )y x y  

We just repeat this argument. Define, for 0,1,2,3n    

0nx x nh   

Suppose that, for some value of n , we have already computed an approximate value 

ny for ( )ny x . Then the rate of change of ( )y x for x close to nx  is 

( , ( )) ( , ( )) ( , )n n n nf x y x f x y x y x y   

and, again for x near nx , 

 ( ) ( , )( )n n n ny x y f x y x x   .   

Hence  

1 1( ) ( , )n n n n ny x y y f x y h     

This algorithm is called Euler's Method. The parameter h is called the step size. 

 

2. The Improved Euler's Method 

 

Euler's method is one algorithm that generates approximate solutions to the initial value 

problem 

      ( ) ( , ( ))y x f x y x   

      0 0( )y x y  

 

In applications, ( , )f x y is a given function and 0x  and 0y are given numbers. The 

function ( )y x is unknown. Denote by ( )x the exact solution for this initial value 

problem. In other words ( )x is the function that obeys the following relation exactly. 

( ) ( , ( ))x f x x    

0 0( )x y   

 

Fix a step size h  and define 0nx x nh  . We now derive another algorithm that 

generates approximate values for   at the sequence of equally spaced values 

0 1 2, , ,x x x  We shall denote the approximate values ny with ( )n ny x  

By the fundamental theorem of calculus and the differential equation, the exact solution 

obeys 
1

1( ) ( ) ( )
n

n

n

x

n

x

x x x dx  



  

1

( ) ( , ( ))
n

n

n

x

x

x f x x dx 


    

Fix any  n and suppose that we have already found 0 1 2, , , , ny y y y . Our algorithm 

for computing 1ny    will be of the form 

1

1 approximate value for ( , ( ))
n

n

x

n n

x

y y f x x dx


     
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In fact Euler's method is of precisely this form. In Euler's method, we approximate 

( , ( ))f x x for 1n nx x x    by the constant ( , )n nf x y . Thus Euler's approximate value 

for  
1 1

( , ( )) ( , ) ( , )
n n

n n

x x

n n n n

x x

f x x dx f x y dx f x y h
 

    

 

The area of the complicated region 0 ( , ( ))y f x x  ; 1n nx x x    (represented by the 

shaded region under the parabola in the left half of the figure below) is approximated by 

the area of the rectangle 0 ( , )n ny f x y  ; 1n nx x x    (the shaded rectangle in the 

right half of the figure below). 

 
 

Our second algorithm, the improved Euler's method, gets a better approximation by 

attempting to approximate by the trapezoid on the right below rather than the rectangle on 

the right above. The exact area of this trapezoid is the length h of the base multiplied by 

 

the average,  1 1

1
( , ( )) ( , ( ))

2
n n n nf x x f x x   , of the heights of the two sides. Of course 

we do not know ( )nx or 1( )nx  exactly. Recall that we have already found 

0 1 2, , , , ny y y y and are in the process of finding 1ny  . So we already have an 

approximation for ( )nx , namely ny , but not for 1( )nx  . Improved Euler uses 

1( ) ( ) ( ) ( , )n n n n n nx x x h y f x y h  
     
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in approximating  1 1

1
( , ( )) ( , ( ))

2
n n n nf x x f x x   . Altogether Improved Euler's 

approximate value for  
1

1

1
( , ( )) ( , ) ( , ( , ) )

2

n

n

x

n n n n n n

x

f x x dx f x y f x y f x y h h


     

so that the improved Euler's method algorithm is 

 1 1 1

1
( ) ( , ) ( , ( , ) )

2
n n n n n n n n ny x y y f x y f x y f x y h h        

 

The general step is 

1 ( , )n n n np y hf x y   ,        1n nx x h    , 

1 1 1( ( , ) ( , ))
2

n n n n n n

h
y y f x y f x p      

  

Report: 

 

#Exercise 1.  

 Use Euler‟s method to solve the IVP 
2

x y
y


   on [0,3]  with (0) 1y  . Compare 

solutions for 
1 1 1

1, , and
2 4 8

h  . 

The exact solution is / 23 2xy e x   . 

 

#Exercise 2. 

 Consider the following circuit: 

 
In this circuit, 20 ,  10 ,  117  and Q(0)=0R K C F E V    . Find 

 for 0 to 3secQ t t  . 

 

 

#Exercise 3.  

Solve exercise 1 and 2 using Improved Euler‟s method. 

 

 

 

 




